International Journal of Advanced Innovative Technology in Engineering (IJAITE)



Machine Learning and Deep Learning Approaches for Breast Cancer Recurrence Prediction: A Systematic Literature Review

Prachi Damodhar Shahare, Abha Mahalwar

Abstract :

Breast cancer recurrence remains a major clinical challenge despite advances in diagnosis and treatment, significantly affecting long-term survival and patient management. Accurate recurrence prediction is essential for personalized therapy planning and optimized follow-up strategies. In recent years, artificial intelligence–driven approaches, including machine learning, deep learning, hybrid, and ensemble models, have been widely explored to address limitations of traditional prognostic methods. This study presents a systematic literature review of computational models developed for breast cancer recurrence prediction, following PRISMA guidelines. Peer-reviewed studies published between 2017 and 2025 were systematically identified, screened, and categorized based on learning paradigm, data modality, prediction objective, and evaluation strategy. The review provides a structured synthesis of methodological trends, comparative performance outcomes, and clinical applicability across machine learning, deep learning, hybrid, and ensemble frameworks. Key challenges related to data heterogeneity, class imbalance, interpretability, longitudinal modeling, and external validation are critically analyzed. The findings highlight hybrid and ensemble approaches as the most promising solutions for robust recurrence prediction. Future research directions emphasize explainable, survival-aware, and clinically deployable AI models for precision oncology.

Keywords :

Breast Cancer Recurrence; Machine Learning; Deep Learning; Hybrid and Ensemble Models

Full Text :

Download PDF

DOI : 10.65809/IJAITE/24/v09i01/001

Cite this paper :

-

References :

[1] Monisha, J. A., Sarathi, S., Hemavathy, V., Pandian, B., & Nightingale, F. (2023). Management of Breast Cancer: an Overview. CARDIOMETRY, 26, 589–592. https://doi.org/10.18137/cardiometry.2023.26.589592 [2] S. Hugar and S. V, "Early Detection of Breast Cancer Recurrence using Machine Learning for Improved Patient Outcomes," 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, 2025, pp. 1-6, doi: 10.1109/IITCEE64140.2025.10915526 [3] Acs, G., Esposito, N., Kiluk, J. V., Laronga, C., Lee, M. C., Loftus, L., Soliman, H., Boughey, J. C., Reynolds, C., Acs, P., & Gordan, L. (2009). Estimation of Risk of Recurrence of Early Stage Estrogen Receptor Positive Breast Carcinoma by Surgical and Medical Oncologists and Pathologists Compared to the Oncotype Dx® Recurrence Score. 69, 4061. https://doi.org/10.1158/0008-5472.SABCS-09 4061 [4] Rowley, M., Garmo, H., Van Hemelrijck, M., Wulaningsih, W., Grundmark, B., Zethelius, B., Hammar, N., Walldius, G., Inoue, M., Holmberg, L., & Coolen, A. C. C. (2015). Practical survival analysis tools for heterogeneous cohorts and informative censoring. arXiv: Applications. https://arxiv.org/abs/1511.06849 [5] Zhang, H., Hussin, H., Hoh, C.-C., Cheong, S. K., Lee, W.-K., & Yahaya, B. H. (2024). Big data in breast cancer: Towards precision treatment. Digital Health, 10. https://doi.org/10.1177/20552076241293695 [6] Singh, D., Sachdeva, D., & Singh, L. (2024). Advancing Breast Cancer Drug Delivery: The Transformative Potential of Bioinformatics and Artificial Intelligence. Current Cancer Therapy Reviews. https://doi.org/10.2174/011573394728770924022910 4857 [7] Renukadevi, M., & Gomathi, S. (2025). Multi-Modal Hybrid Ensemble Framework for Breast Cancer Prognosis: Integrating Advanced Feature Engineering with Stacked Meta-Learning for Enhanced Clinical Decision Support. 1166–1170. https://doi.org/10.1109/icscds65426.2025.11166857 [8] Al-Duais, M., AL-KHULAIDI, A. A. G., Mohamad, F. S., Yousef, W., Al-Fuhaidi, B., Al-Taweel, S., Mohamad, M., Husen, M. N., & Yusoff, N. (2025). Comparative Analysis of Machine Learning and Deep learning Techniques for Early Prediction of Breast Cancer. Journal of Future Artificial Intelligence and Technologies, 2(2), 242–254. https://doi.org/10.62411/faith.3048-3719-68 [9] El Haji, H., Souadka, A., Patel, B. N., Sbihi, N., Ramasamy, G., Patel, B. K., Ghogho, M., & Banerjee, I. (2023). Evolution of Breast Cancer Recurrence Risk Prediction: A Systematic Review of Statistical and Machine Learning-Based Models. JCO Clinical Cancer Informatics, 7, e2300049. https://doi.org/10.1200/cci.23.00049 [10] Noman, S. M., Fadel, Y. M., Attia, N., Tarek, M., Essam, M., ElMasarawi, S. M., Fouad, F. A., GEltasawi, E., & Al‐Atabany, W. (2025). Leveraging Survival Analysis and Machine Learning for Accurate Prediction of Breast Cancer Recurrence and Metastasis. https://doi.org/10.21203/rs.3.rs-5059228/v1 [11] Vadthe, N., Reddy, R. T., Kadiyala, R., Paritala, C., Shariff, V., & Rakesh, V. (2024). Assessing the Resilience of Machine Learning Models in Predicting Long-Term Breast Cancer Recurrence Results. 416–422. https://doi.org/10.1109/icisc62624.2024.00077 [12] Jiang, X., Zhou, Y., Wells, A., & Brufsky, A. (2025). Leveraging Deep Learning, Grid Search, and Bayesian Networks to Predict Distant Recurrence of Breast Cancer. Cancers, 17(15), 2515. https://doi.org/10.3390/cancers17152515 [13] Lauritzen, A. D., Jensen, M.-B., Lillholm, M., & Knoop, A. (2023). Identifying recurrent breast cancer patients in national health registries using machine learning. Acta Oncologica, 62, 350–357. https://doi.org/10.1080/0284186X.2023.2201687[14] Li, J. (2024). Evaluative Comparison of Machine Learning Algorithms for Precision Diagnosis in Breast Cancer. Highlights in Science Engineering and Technology, 85, 354–362. https://doi.org/10.54097/40fmfw48 [15] Mengad, A., & Amali, S. M. J. (2023). A Comparative Study of Machine Learning Techniques to Predict Types of Breast Cancer Recurrence. International Journal of Advanced Computer Science and Applications, 14(5). https://doi.org/10.14569/ijacsa.2023.0140531 [16] See, M., Tan, Q., Lai, L., Ng, J., Abd Haleem, N., Yahya, A., Lim, P., Wu, Y.-S., Ling, P., & Pai, T. (2023). A Data-Driven Approach: Investigating Prognostic Factors for Overall Survival in Breast Conserving Surgery (BCS) using Machine Learning. https://doi.org/10.21203/rs.3.rs 3671157/v1 [17] González-Castro, L., Chavez, M., Duflot, P., Bleret, V., Martin, A., Zobel, M., Nateqi, J., Lin, S., Pazos-Arias, J. J., Del Fiol, G., & López-Nores, M. (2023). Machine Learning Algorithms to Predict Breast Cancer Recurrence Using Structured and Unstructured Sources from Electronic Health Records. Cancers, 15(10), 2741. https://doi.org/10.3390/cancers15102741 [18] Shah, A. (2025). Training an Artificial Intelligence Model to Predict Breast Cancer Recurrence. Journal of Student Research, 14(1). https://doi.org/10.47611/jsrhs.v14i1.8783 [19] Cartron, M. (2022). Prediction of Breast Cancer Recurrence in Five Years using Machine Learning Techniques and SHAP. Lecture Notes in Electrical Engineering, 441–453. https://doi.org/10.1007/978 981-19-0252-9_40 [20] Zeng, L., Liu, L., Chen, D., Xue, Y., Bi, H.-L., & Yang, W. (2023). The innovative model based on artificial intelligence algorithms to predict recurrence risk of patients with postoperative breast cancer. Frontiers in Oncology, 13. https://doi.org/10.3389/fonc.2023.1117420 [21] Shankar, R. S., Chigurupati, R. S., Voosala, P., & Pilli, N. (2023). An extensible framework for recurrent breast cancer prognosis using deep learning techniques. Indonesian Journal of Electrical Engineering and Computer Science, 29(2), 931. https://doi.org/10.11591/ijeecs.v29.i2.pp931-941 [22] Fanizzi, A., Bove, S., Comes, M. C., Di Benedetto, E. F., Latorre, A., Giotta, F., Nardone, A., Rizzo, A., Soranno, C., Zito, A., & Massafra, R. (2024). Prediction of breast cancer Invasive Disease Events using transfer learning on clinical data as image-form. PLOS ONE, 19(11), e0312036. https://doi.org/10.1371/journal.pone.0312036 [23] Sahoo, G., Nayak, A. K., Tripathy, P. K., Pati, A., Panigrahi, A., Rath, A., & Moharana, B. (2024). Breast cancer relapse disease prediction improvements with ensemble learning approaches. Indonesian Journal of Electrical Engineering and Computer Science. https://doi.org/10.11591/ijeecs.v35.i1.pp335-342 [24] Kim, I., Choi, H. J., Ryu, J. M., Lee, S. K., Yu, J. H., Kim, S. W., Nam, S. J., & Lee, J. E. (2019). A predictive model for high/low risk group according to oncotype DX recurrence score using machine learning. Ejso, 45(2), 134–140. https://doi.org/10.1016/J.EJSO.2018.09.011. [25] Su, Z., Guo, Y., Wesolowski, R., Tozbikian, G., O’Connell, N. S., Khalid, M., Niazi, K., & Gurcan, M. N. (2024). Computational Pathology for Accurate Prediction of Breast Cancer Recurrence: Development and Validation of a Deep Learning-based Tool. arXiv.Org. https://doi.org/10.48550/arxiv.2409.15491 [26] Azman, B., Hussain, S. S., Azmi, N. H. M., Ghani, M., & Norlen, N. (2022). Prediction of Distant Recurrence in Breast Cancer using a Deep Neural Network. Revista Internacional De Metodos Numericos Para Calculo Y Diseno En Ingenieria, 38(1). https://doi.org/10.23967/j.rimni.2022.03.006 [27] Su, Z., Niazi, M. K. K., Tavolara, T. E., Niu, S., Tozbikian, G., Wesolowski, R., & Gurcan, M. N. (2023). BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images. PLOS ONE, 18(4), e0283562. https://doi.org/10.1371/journal.pone.0283562 [28] Fagbuagun, O., Folorunsho, O., Adewole, L. B., & Akin Olayemi, T. (2022). Breast Cancer Diagnosis in Women Using Neural Networks and Deep Learning. Journal of ICT Research and Applications, 16(2), 152–166. https://doi.org/10.5614/itbj.ict.res.appl.2022.16.2.4 [29] Phan, N. N., Hsu, C.-Y., Huang, C.-C., Tseng, L.-M., & Chuang, E. Y. (2021). Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of Interest Labeling. Frontiers in Oncology, 11, 734015. https://doi.org/10.3389/FONC.2021.734015 [30] Shi, Y., Olsson, L. T., Hoadley, K. A., Calhoun, B. C., Marron, J. S., Geradts, J., Niethammer, M., & Troester, M. A. (2023). Predicting early breast cancer recurrence from histopathological images in the Carolina Breast Cancer Study. NPJ Breast Cancer, 9. https://doi.org/10.1038/s41523-023-00597-0 [31] Chandran, A., Mary, V., & Bai, A. (2024). Breast cancer recurrence prediction with deep neural network and feature optimization. Automatika, 65, 343–360. https://doi.org/10.1080/00051144.2023.2293280 [32] Sankar, P., & Bai, R. (2022). Survival Analysis on Relapse Predictions of Breast Cancer using Optimized ANN and Deepsurv Model. 1–6. https://doi.org/10.1109/IC3SIS54991.2022.9885556 [33] P. Srivastava, R. Devrani and M. Kukreja, "Automated Diagnosis of Breast Cancer Using Deep Learning," 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 2024, pp. 1-6, doi: 10.1109/ICCCNT61001.2024.10725541 [34] Comes, M. C., La Forgia, D., Didonna, V., Fanizzi, A., Giotta, F., Latorre, A., Martinelli, E., Mencattini, A., Paradiso, A., Tamborra, P., Terenzio, A., Zito, A., Lorusso, V., & Massafra, R. (2021). Early prediction of breast cancer recurrence for patients treated with neoadjuvant chemotherapy: A transfer learning approach on dce-mris. Cancers, 13(10), 2298. https://doi.org/10.3390/CANCERS13102298 [35] Kalafi, E. Y., Nor, N. A. M., Taib, N. A., Ganggayah, M. D., Town, C., & Dhillon, S. K. (2019). Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biologica, 65, 212 220. https://pubmed.ncbi.nlm.nih.gov/32362304 [36] Prasad, V. vara, Venkataramana, L., Keerthana, S., & Subha, R. (2023). Optimization of Deep CNN Techniques to Classify Breast Cancer and Predict Relapse. Journal of Advanced Zoology, 44(4), 774–787. https://doi.org/10.17762/jaz.v44i4.2182 [37] Gupta, S., & Gupta, M. K. (2021). A Comparative Analysis of Deep Learning Approaches for Predicting Breast Cancer Survivability. Archives of Computational Methods in Engineering, 1–17. https://doi.org/10.1007/S11831 021-09679-3 [38] Chandran, A., & Bai, M. A. (2023). Optimized Deep Convolutional Neural Network for the Prediction of Breast Cancer Recurrence. Journal of Applied Engineering and Technological Science. https://doi.org/10.37385/jaets.v5i1.3384 [39] Kumari, D., Naidu, M. V. S. S., Panda, S., & Christopher, J. (2025). Predicting breast cancer recurrence using deep learning. Discover Applied Sciences, 7, 113. https://doi.org/10.1007/s42452-025-06512-5 [40] Mohebian, M. R., Marateb, H. R., Mansourian, M., Mañanas, M. A., & Mokarian, F. (2017). A Hybrid Computer-aided diagnosis System for Prediction of Breast Cancer Recurrence (HPBCR) using optimized ensemble learning. Computational and Structural Biotechnology Journal, 15, 75–85. https://doi.org/10.1016/J.CSBJ.2016.11.004. [41] Edeh, M. O. (2022). A hybrid machine learning model for timely prediction of breast cancer. International Journal of Modeling, Simulation, and Scientific Computing. https://doi.org/10.1142/s1793962323410234 [42] Othman, N. A.-H., Abdel-Fattah, M. A., & Ali, A. T. (2023). A Hybrid Deep Learning Framework with Decision-LevelFusion for Breast Cancer Survival Prediction. Big Data and Cognitive Computing, 7(1), 50. https://doi.org/10.3390/bdcc7010050 [43] Rao, U., & Katariya, Y. (2024). Breast cancer prediction from gene expression data using recurrent neural networks. 6(1), 735–738. https://doi.org/10.21917/ijdsml.2024.0150 [44] Mishra, S., Angurala, M., & Sharma, Y. (2023). A Next-Gen Approach to Breast Cancer Prediction. 1, 1–7. https://doi.org/10.1109/icaiihi57871.2023.10489356 [45] G. Sajiv, G. Ramkumar, S. Shanthi, Arunachalam Chinnathambi, Sulaiman Ali Alharbi, RETRACTED: Predicting Breast Cancer Risk from Histopathology Images using Hybrid Deep Learning Classifier, Medical Engineering & Physics, 2024, 104149, ISSN 1350-4533, https://doi.org/10.1016/j.medengphy.2024.104149 [46] Pandey, S. K., Rathore, Y., Ojha, M. K., Janghel, R. R., Sinha, A., & Kumar, A. (2024). BCCHI-HCNN: Breast Cancer Classification from Histopathological Images Using Hybrid Deep CNN Models. Deleted Journal. https://doi.org/10.1007/s10278-024-01297-2 [47] Swathi, K. (2025). Breast Cancer Classification Using CNN and SVM: A Hybrid Approach. International Journal For Science Technology And Engineering, 13(8), 889–894. https://doi.org/10.22214/ijraset.2025.73626 [48] Saini, V., Khurana, M., & Challa, R. K. (2025). Hybrid CNN ViT Model for Breast Cancer Classification in Mammograms: A Three-Phase Deep Learning Framework. Journal of Electronics, Electromedical Engineering, and Medical Informatics, 7(4), https://doi.org/10.35882/jeeemi.v7i4.920 [49] Raghuramaiah, B., 977–990. & Chittineni, S. (2025). BreastHybridNet: A Hybrid Deep Learning Framework for Breast Cancer Diagnosis Using Mammogram Images. International Journal of Computational and Experimental Science and Engineering, 11(1). https://doi.org/10.22399/ijcesen.812 [50] Chakravarthy, S. R. S., Bharanidharan, N., Bhatia, S., Kumar, V. V., Mahesh, T. R., Almusharraf, A., & Albalawi, E. (2024). Multi-class Breast Cancer Classification Using CNN Features Hybridization. International Journal of Computational Intelligence Systems, 17(1). https://doi.org/10.1007/s44196-024-00593-7 [51] Lakshminarayanan, K., Robinson, Y. H., Vimal, S., & Kang, D. (2021). A Hybrid Deep Learning Approach for Detecting and Classifying Breast Cancer Using Mammogram Images (pp. 851–856). Springer, Cham. https://doi.org/10.1007/978-3-030-70296-0_64 [52] Almuhaidib, D. A., Shaiba, H., Alharbi, N. G., Alotaibi, S. M., Albusayyis, F. M., Alzaid, M. A., & Almadhi, R. M. (2018). Ensemble Learning Method for the Prediction of Breast Cancer Recurrence. https://doi.org/10.1109/CAIS.2018.8442017 32 [53] Sahoo, G. (2023). Enhanced breast Cancer Relapse Prediction Based on Ensemble Learning Approaches. International Journal on Recent and Innovation Trends in Computing and Communication. https://doi.org/10.17762/ijritcc.v11i10.8619 [54] Elshafey, M. A., & Ghoniemy, T. E. (2021). A hybrid ensemble deep learning approach for reliable breast cancer detection. International Journal of Advances in Intelligent Informatics, 7(2), 112–124. https://doi.org/10.26555/IJAIN.V7I2.615 [55] Chandra, P., Reddy, S., Nithyapriya, S., Sharma, N., Maheswari, S., Jayaram, B., & Katale, T. (2023). A Novel Ensemble Deep Learning Framework for Breast Cancer Prediction. 1–6. https://doi.org/10.1109/icses60034.2023.10465347 [56] Choudhury, Z. H. (2023). Integrating Random Forest, MLP and DBN in a Hybrid Ensemble Model for Accurate Breast Cancer Detection. https://doi.org/10.31219/osf.io/sdjqf