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1. INTRODUCTION 

Steel plates are widely used in industries such 
as construction, automotive, and shipbuilding, 
where material integrity is critical. Manual 
inspection methods are often labor-intensive, 
time-consuming, and prone to human error. With 
the growing adoption of smart manufacturing, 
automated defect detection systems powered by 
machine learning (ML) and deep learning (DL) 
have emerged as promising solutions. These 
systems aim to identify surface anomalies like 

cracks, dents, inclusions, and scratches with higher 
accuracy and speed. 

Traditionally, the control of surface quality is 
conducted manually, and workers are trained in 
order to identify the complicated surface defects. 
Nevertheless, this kind of control is inefficient and 
time-consuming, and its accuracy of detection is 
affected by the experience, energy and subjectivity 
of inspectors. With the aim of overcoming the 
shortcomings of manual inspection, the automatic 
detection of surface defects on the basis of machine 
vision came into being. In the last decade, many 
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approaches [1]-[2] have been utilized for 
automatic detection of surface defects on steel. The 
major principle is to utilize the shape or pixel 
values of steel surface to predict defects; 
nevertheless, it is time-consuming and complex to 
set threshold and obtain feature parameters. 

This review paper presents a comprehensive 
overview of various ML and DL-based techniques 
applied to steel plate defect detection. We aim to 
summarize the key developments, compare their 
performances, and highlight the future trends in 
this rapidly evolving field. 
 
2 Steel Plate Scratch Detection System  

The steel plate scratch defect detection system 
built in this paper is shown in Fig. 1, which mainly 
includes visual monitoring device, communication 
network and monitoring center. The visual 
monitoring device includes CCD (charge coupled 
device) cameras, light source and power supply. 
The cameras are set up above the steel plate and 
are perpendicular to the steel plate plane, and the 
light source is installed directly above the steel 
plate. The communication network transmits the 
image data to the monitoring center. The received 
images are processed and analyzed by PC (person 
computer) through intelligent analysis software 
and various embedded image processing 
algorithms [9]. Detection results are recorded and 
stored for qualitative and quantitative analysis of 
entire steel plate. 
 
Analysis of Features of Roll Marks 

Roll marks are a set of uneven defects with 
periodicity. They are generally due to roll fatigue, 
insufficient hardness, or foreign matter on the 
surface of the rolls during rolling operations. The 
morphological features of roll marks on the same 
batch are stable and similar; the morphological 
features of roll marks on different batches can vary 
due to the repeated rolling of the steel plates. Roll 
marks are present on both the upper and lower 
surfaces of plates, mainly at the operating side and 
the middle position of the plates. They are bright 
spots observable by the naked eye, and dark spots 
in the image captured by a camera. 

 
Figure 1: Images of rolling marks 

 
Figure 1 shows an original image of roll marks. 
Figure 1b shows the defect area and that the roll 
marks in the frame are arranged periodically. 
Figure 2 contains details of a single defect, which 
shows that the morphological features are similar. 

 
Figure 2: Roll marks on the same batch 

 
Figure 3: Roll marks on different batches. 

 
Roll mark defects are not well-detected because of 
the greatly different morphological features of roll 
marks on different batches. The traditional CNN 
classifies defects by extracted morphological 
features [6]. Therefore, a CNN can easily 
misclassify roll marks due to their unfixed 
morphological features. Consequently, the 
classification accuracy is not high. 
However, as roll mark defects have strong 
periodicity, their time-sequenced characteristics 
are suitable for handling by LSTM. 
 

2. RELATED WORK 
 

A. Machine Learning 
Machine Learning is the general term for 

when computers learn from data. Machine 
learning is the application/subset of artificial 



Komal Raju Nimsarkar et. al., International Journal of Advanced innovative Technology in Engineering, 2024, 9(4), PP 1-9 
 

 
 
© International Journal of Advanced Innovative Technology in Engineering  3 

intelligence. Machine learning centers on the 
advancement of PC programs, and the essential 
point is to enable PCs to adapt consequently 
without human intervention. There are various 
algorithms that machines can learn. The 
information that you feed to a machine learning 
algorithm can be input-output sets or just inputs. 
Supervised learning calculations require input-
output sets (i.e., they require the output). 
Unsupervised learning requires just the input 
information (not the output). 
 
Supervised Learning Techniques: Supervised 
learning techniques learn a function to map the 
given input to discrete/continuous output space. 
For example, in a webpage classification problem, 
the learner approximates a function mapping the 
feature vector into “Politics” or “Cricket” by 
reducing the error on training input-output 
examples. Since the function outputs a discrete 
value, it is referred to as classification. Consider 
another example, where the input review text has 
to be mapped to a score between 1 and 10. In this 
case, the output is a continuous value, it is referred 
to as regression. Active Learning is a supervised 
learning paradigm, which allows querying the 
user/oracle to obtain the label for an input data 
point. Typically, it is used in cases where there is a 
fixed budget for getting labels. The querying must 
be done on the most informative data points 
concerning the task at hand. 
 
Unsupervised Learning Techniques: 
Unsupervised learning techniques model the input 
data. The input does not include class labels as in 
the case of supervised learning. For example, to 
understand user browsing behavior, It would be 
like to group users based on their online browsing 
patterns and model each group. It is also called 
clustering. The grouping is performed concerning 
an objective function. For example, in the k-means 
algorithm clustering is done such that the data 
points within a cluster are more similar and the 
data points across clusters are less similar. Other 
unsupervised learning techniques include 
association rule mining, and blind separation 
techniques for feature extraction such as principal 
component analysis, independent component 
analysis, etc. [9]. 
 
Semi-Supervised Learning: Semi-supervised 
learning (SSL) combines both labeled and 
unlabeled data to learn an appropriate function for 
prediction. Typically, it uses a small amount of 
labeled data and a large amount of unlabeled data. 
It’s a relatively new paradigm and is gaining 
importance because getting access to completely 
labeled data is hard and costly. The use of 
unlabeled data provides regularization, and it has 
been shown to improve performance. 
Transductive learning works only on the labeled 

and unlabeled training data, and cannot handle 
unseen data. On the other hand, inductive learners 
can handle unseen data. 
 

B. Classification 
Classification is a data mining technique that 

typically involves three phases, a learning phase, a 
testing phase, and an application phase. A learning 
model or classifier is built during the learning 
phase. It may be in the form of classification rules, 
a decision tree, or a mathematical formula. Since 
the class label of each training sample is provided, 
this approach is known as supervised learning. In 
unsupervised learning (clustering), the class labels 
are not known in advance. In the testing phase, test 
data are used to assess the accuracy of the 
classifier. If the classifier passes the test phase, it is 
used for the classification of new, unclassified data 
tuples. This is the application phase. The classifier 
predicts the class label for these new data samples. 
For classification algorithms, the two major 
problems in classifying a data stream are the 
infinite length and the concept drift. The first one 
makes the traditional multi-pass classification 
algorithms incapable of classifying a data stream 
for their requirement of infinite storage and a large 
amount of training time. The second one makes the 
most static stream classification algorithms 
incapable of classifying a data stream with concept 
drifts for the underlying changes that occurred in 
the stream. For a time, changing data stream, an 
incremental updating manner of the classifier is 
very important. A temporal model is used to 
capture the evolutions of the stream. In general, 
the classification process is always accompanied 
by the course of model construction and test. The 
classification model keeps changing with the 
progression of the stream. If a static classifier is 
used to classify an evolving data stream, its 
accuracy of it will drop greatly. For a sudden burst 
of concept drift in a time-changing stream, an up-
to-date model always provides better accuracy. 
But for relatively stable time-changing streams, 
models built with long-term samples will be great 
[10]. 

In recent years, advancements in computer 
technology have expanded the use of vision 
techniques in defect detection. This involves 
traditional machine vision algorithms and deep 
learning. Hu et al.3 introduced the AdaBoost 
algorithm to enhance the accuracy of detecting 
uncommon defects on steel plate surfaces. This 
algorithm improves accuracy by increasing 
combinable weak classifiers through a filtering 
mechanism. 
Congzhe You et al. (2024) proposed the deep 
learning model enhanced steel surface defect 
detection algorithm based on YOLOv8 was 
introduced to enhance the accuracy of small target 
detection. This algorithm incorporates an 
attention-free mechanism to calculate attention-
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weight, aiding in the extraction of specific feature 
regions. Additionally, improvements were made to 
the SPPF module to expand the receptive field and 
enhance target detection optimization. 
Experimental evaluations on the NEU-DET dataset 
demonstrated significant enhancements over the 
original YOLOv8 algorithm. The improved 
algorithm exhibited a 9.3 percentage point 
increase in precision, a 10-percentage point 
increase in recall, a 4.6 percentage point increase 
in mAP@0.5, and a remarkable 21.2 percentage 
point increase in mAP@0.5:0.95. Significant 
progress has also been made in analyzing the 
surface data of aluminum sheets. The enhanced 
algorithm has shown a 6% increase in precision 
compared to the original YOLOv8 algorithm. 
Additionally, recall has improved by 3.2%, 
mAP@0.5 has increased by 4.1%, and 
mAP@0.5:0.95 has seen a notable rise of 17.4%. 
Lu, J. et al. (2024) introduces SS-YOLO (YOLOv7 for 
Steel Strip), an enhanced lightweight YOLOv7 
model. This method replaces the CBS module in the 
backbone network with a lightweight MobileNetv3 
network, reducing the model size and accelerating 
the inference time. The D-SimSPPF module, which 
integrates depth separable convolution and a 
parameter-free attention mechanism, was 
specifically designed to replace the original 
SPPCSPC module within the YOLOv7 network, 
expanding the receptive field and reducing the 
number of network parameters. The parameter-
free attention mechanism SimAM is incorporated 
into both the neck network and the prediction 
output section, enhancing the ability of the model 
to extract essential features of strip surface defects 
and improving detection accuracy. The 
experimental results on the NEU-DET dataset 
show that SS-YOLO achieves a 97% mAP50 
accuracy, which is a 4.5% improvement over that 
of YOLOv7. Additionally, there was a 79.3% 
reduction in FLOPs(G) and a 20.7% decrease in 
params. 
Wang, S. et. al (2021) proposes a method 
combining improved ResNet50 and enhanced 
faster region convolutional neural networks 
(faster R-CNN) to reduce the average running time 
and improve the accuracy. Firstly, the image input 
into the improved ResNet50 model, which add the 
deformable revolution network (DCN) and 
improved cutout to classify the sample with 
defects and without defects. If the probability of 
having a defect is less than 0.3, the algorithm 
directly outputs the sample without defects. 
Otherwise, the samples are further input into the 
improved faster R-CNN, which adds spatial 
pyramid pooling (SPP), enhanced feature pyramid 
networks (FPN), and matrix NMS. The final output 
is the location and classification of the defect in the 
sample or without defect in the sample. By 
analyzing the data set obtained in the real factory 
environment, the accuracy of this method can 

reach 98.2%. At the same time, the average 
running time is faster than other models. [1]. 
Liu, Yang et. al. (2019) proposed to detect periodic 
defects, such as roll marks, according to the strong 
time-sequenced characteristics of such defects. 
Firstly, the features of the defect image are 
extracted through a CNN network, and then the 
extracted feature vectors are inputted into an 
LSTM network for defect recognition. The 
experiment shows that the detection rate of this 
method is 81.9%, which is 10.2% higher than a 
CNN method. In order to make more accurate use 
of the previous information, the method is 
improved with the attention mechanism. The 
improved method specifies the importance of 
inputted information at each previous moment, 
and gives the quantitative weight according to the 
importance. The experiment shows that the 
detection rate of the improved method is increased 
to 86.2%. [2]. 
Li, Hanlin et. al. (2023) proposed RepBi-PAN 
fusion network into YOLOv5, enhancing the 
detection capability for large targets in complex 
backgrounds. To mitigate issues related to the 
premature introduction of shallow features and 
decrease in Precision, we optimized the model 
structure by incorporating the DenseNet structure 
into the backbone for improved feature extraction. 
Additionally, we introduced the Normalized 
Attention Module (NAM) to enhance the detection 
capability for small targets. Experimental results 
demonstrate the effectiveness of the enhanced 
model, showing a 4.1% increase in mean average 
precision (mAP), a 3.2% improvement in precision, 
and a 2.4% enhancement in recall. The improved 
algorithm outperforms the original in complex 
backgrounds and recognizing small targets, 
addressing limitations of the Rep-Bi network. 
Compared to other YOLO algorithms, our approach 
achieves optimal values for recall and mAP while 
maintaining a smaller model size. In comparison 
with YOLOv8, the improved model surpasses all V8 
models, being only 0.5% below the precision of the 
largest YOLOv8x model. Simultaneously, the 
improved model is smaller and has fewer 
parameters compared to all models in the YOLOv8 
series, with slightly higher GFLOPs than the 
smaller v8 models. [3]. 
Vira Fitriza et. al. (2020) proposed a deep 
learning CNN with Xception architecture to detect 
steel defects from images taken from high-
frequency and high-resolution cameras. There are 
two techniques used, and both produce 
respectively 0.94% and 0.85% accuracy. The 
Xception architecture used in this case shows 
optimal and stable performance in the process and 
its results. [4]. 
Weidong Zhao et. al. (2021) proposed an urrent 
detection algorithms for NEU-DET dataset 
detection accuracy are low, so we choose to verify 
a steel surface defect detection algorithm based on 
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machine vision on this dataset for the problem of 
defect detection in steel production. A series of 
improvement measures are carried out in the 
traditional Faster R-CNN algorithm, such as 
reconstructing the network structure of Faster R-
CNN. Based on the small features of the target, we 
train the network with multiscale fusion. For the 
complex features of the target, we replace part of 
the conventional convolution network with a 
deformable convolution network. The 
experimental results show that the deep learning 
network model trained by the proposed method 
has good detection performance, and the mean 
average precision is 0.752, which is 0.128 higher 
than the original algorithm. Among them, the 
average precision of crazing, inclusion, patches, 
pitted surface, rolled in scale and scratches is 
0.501, 0.791, 0.792, 0.874, 0.649, and 0.905, 
respectively. The detection method is able to 
identify small target defects on the steel surface 
effectively, which can provide a reference for the 
automatic detection of steel defects [5]. 
Yang, L., et. al. (2023) proposed an automatic 
detection method for steel plate scratch. irstly, the 
steel plate image is decomposed by channel and 
the enhanced image is obtained by the improved 
MSR (Multi-Scale Retinex) enhancement 
algorithm. Then, the phase consistency is detected 
after the Log Gabor wavelet transform and the 
scratch areas are obtained by the threshold 
segmentation and intersection of three channels. 
Finally, the scratch position is identified and the 
scratch characteristics such as width and length 
can be calculated. The results show that the 
minimum error of the characteristics 
measurement is only 2.28% in the experimental 
environment and 4.15% in the field environment, 
and the mean running time is 0.2826 s in the 
experimental environment and 0.3193 s in the 
field environment. It verifies that the proposed 
method is effective and practical [6]. 
Wang, D. et. al. (2023) first classified the common 
edge defects and then made a dataset of edge 
defect images on this basis. Subsequently, edge 
defect recognition models were established on the 
basis of LeNet-5, AlexNet, and VggNet-16 by using 
a convolutional neural network as the core. 
Through multiple groups of training and 
recognition experiments, the model’s accuracy and 
recognition time of a single defect image were 
analyzed and compared with recognition models 
with different learning rates and sample batches. 
The experimental results showed that the 
recognition model based on the AlexNet had a 
maximum accuracy of 93.5%, and the average 
recognition time of a single defect image was 0.00 
35 s, which could meet the industry requirement. 
The research results in this paper provide a new 
method and thought for the fine detection of edge 
defects in hot rolling strips and have practical 

significance for improving the surface quality of 
hot rolling strips. [7]. 
Zhang,M. et. al. (2021) proposed the image 
enhancement algorithm based on adaptive 
threshold gray transformation to enhance the 
quality of steel surface defect image, and then the 
image was processed by Gabor filter and image 
segmentation [8].  
Kun Liu et. al. (2020) established a specific 
template for each defect image, and the test image 
was decomposed into structural component and 
texture component. By calculating the index 
gradient similarity between template and texture 
component, various defects on the steel plate 
surface can be detected [9].  
Yue Wu et. al. (2021) introduced the advantages 
of residual structure and feature fusion of YOLOv3 
model into the Faster R-CNN model and realized 
the classification of different defects of steel plate. 
However, these methods were qualitative analysis, 
and they all processed the ideal images without 
considering the image samples under non-ideal 
conditions such as uneven illumination and 
blurred target. With the development of the scale 
and technology of steel industry, there is an 
increasing demand for quantitative analysis of 
steel plate surface defects [10]. 
 

C. Defect Recognition Algorithm Based on 
Traditional Machine Learning 
The traditional machine learning 

approach was an epoch-making advancement from 
manual inspection, and usually starts with the 
manual design of feature extraction rules, followed 
by feature extraction, and finally feeds the 
extracted features into the classifier to achieve the 
classification of defects. Because of the reliance on 
manually designed feature extraction rules, it leads 
to poor robustness and generalization ability of the 
algorithm and is susceptible to interference and 
the influence of noise, thus reducing the detection 
accuracy. The most traditional methods basically 
only provide a defect classification function and do 
not perform defect localization or segmentation, 
which is an incomplete defect recognition process. 
The machine learning algorithms used for steel 
surface defect recognition can be broadly classified 
into texture feature-based methods, shape feature-
based methods, and color feature-based methods. 
However, in the field of steel surface defect 
detection, since color features mainly refer to 
grayscale features of the image, and the methods 
used to extract grayscale features are statistically 
based, the color feature-based methods were 
classified here under the texture feature-based 
methods.  
 
D. Texture Feature-Based Methods 

Texture feature-based methods are the 
most common methods in the field of steel defect 
detection, which reflects the homogeneity 
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phenomenon in the image and can reflect the 
organization and arrangement characteristics of 
the image surface through the grayscale 
distribution of pixels and their nearby spatial 
neighborhood [1]. As shown in Figure4, it can be 
subdivided into statistical-based methods, filter-
based methods, structure-based methods, and 
model-based methods. These four methods can be 
used in combination or in conjunction with each 
other to achieve a higher performance. Regarding 
the literature on texture-based feature methods, 
these are shown in Table 1. 

Statistical-based methods are used to 
measure the spatial distribution of pixel values, 
usually by using the grayscale distribution of 
image regions to describe texture features such as 
heterogeneity and directionality. Its common 
statistical methods include histogram, co-
occurrence matrix, local binary patterns, etc. In 
2015, Chu et al. [2] proposed a feature extraction 
method based on smoothed local binary patterns, 
which is insensitive to noise and invariant to scale, 
rotation, translation, and illumination, so the 
algorithm can maintain a high classification 
accuracy for the identification of strip surface 
defects. In 2017, Truong and Kim [3] proposed an 
automatic thresholding technique, which is an 
improved version of the Otsu method with an 
entropy weighting scheme that is able to detect 
very small defect areas. Luo et al. [4] proposed a 
selective local binary pattern descriptor, which 
was used to extract defect features, and then 
combined it with the nearest neighbor classifier 
(NNC) to classify strip surface defects; this 
algorithm pursued the comprehensive 
performance of recognition accuracy and 
recognition efficiency. The following year, Luo et 
al. [5] also proposed an improved generalized 
complete local binary pattern descriptor and two 
improved versions of the improved complete local 
binary pattern descriptor (ICLBP) and improved 
the complete noise-invariant local structure 
pattern (ICNLP) to obtain the surface defect 
features of the hot rolled steel strip, and then used 
the nearest neighbor classifier to achieve defect 
recognition classification, thus achieving high 
recognition accuracy. Zhao et al., in 2018 [6], 
designed a discriminative manifold regularized 
local descriptor algorithm to obtain steel surface 
defect features and complete matching by the 
manifold distance defined in the subspace to 
achieve the classification of defects in images.  In 
2019, Liu   et al. [7] proposed an improved multi-
block local binary pattern algorithm to extract the 
defect features and generate grayscale histogram 
vectors for steel plate surface defect recognition, 
and this work was able to recognize images at 63 
FPS with a high detection accuracy at the same 
time. 

Filter-based methods are also called 
spectrum-based methods and can be divided into 

spatial domain-based methods, frequency domain 
methods, and space–frequency domain methods. 
They aim to treat the image as a two-dimensional 
signal, and then analyze the im- age from the point 
of view of signal filter design. The filter-based 
methods include curvelet transform, Gabor filter, 
wavelet transform, and so on. Xu et al. [8] achieved 
the multiscale feature extraction of surface defects 
of a hot-rolled steel strip by curvilinear wave 
transform and kernel locality preserving 
projections (KLPP), thus generating high-
dimensional feature vectors before dimensionality 
reduction, and finally, defect classification by SVM. 
In 2015, Xu et al. [9] designed a scheme that 
introduced Shearlet transform to provide effective 
multi-scale directional representation, where the 
metal surface image is decomposed into multiple 
directional sub bands by Shearlet transform, thus 
synthesizing high-dimensional feature vectors, 
which were used for classification after 
dimensionality reduction. Doo-chul CHOI et al. [10] 
used a Gabor filter combination to extract the 
candidate defects and preprocessed them with the 
double threshold method to detect whether there 
were pinhole defects on the steel plate surface. In 
2018 [11], the classification of surface defects of a 
hot-rolled steel strip was achieved by extracting 
multidirectional shear wave features from the 
images and performing gray-level co-occurrence 
matrix (GLCM) calculations on the obtained 
features to obtain a high-dimensional feature set, 
before finally using principal component analysis 
(PCA) for dimensionality reduction followed by 
SVM for defect classification. Liu et al. [12] 
improved the contour wave transform based on 
the contour wave transform and the non-
downsampled contour wave transform, and 
combined the multi-scale subspace of kernel 
spectral regression for feature extraction to 
achieve a relatively good recognition speed and the 
algorithm is applicable to a wide range of metallic 
materials. 

The core goal of structure-based methods 
is to extract texture primitives, followed by the 
generalization of spatial placement rules or 
modeling, which is based on texture primitive 
theory. Texture primitive theory indicates that 
texture is composed of some minimal patterns 
(texture primitive) that appear repeatedly in space 
according to a certain rule. This method is 
applicable to textures with obvious structural 
properties such as texture primitives such as 
density, directionality, and scale size. In 2014, Song 
et al. [13] used saliency linear scanning to obtain 
oiled regions and then used morphological edge 
processing to remove oil interference edges as well 
as reflective pseudo-defect edges to enable the 
recognition of various defects in silicon steel. In 
2016, Shi et al. [14] reduced the effect of 
interference noise on defect edge detection by 
improving the edge detection Sobel algorithm, thus 
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achieving accurate and efficient localization of rail 
surface defects. Liu et al. [15] proposed an 
enhancement operator based on mathematical 
morphology (EOBMM), which effectively 
alleviated the influence of uneven illumination and 
enhanced the details of strip defect images. In 
2016, [16] applied morphological operations to 
extract features of railway images and used Hough 
transform and image processing techniques to 
detect the track images obtained from the real-
time camera to accurately recognize defect areas 
and achieve real-time recognition. 

Model-based methods construct a 
representation of an image by modeling multiple 
attributes of a defect [17]. Some of the more 
common model-based approaches in the field of 
industrial product surface defect recognition are 
Markov models, fractal models, Gaussian mixture 
models, and low-rank matrix models, etc. In 2013, 
Xv et al. [18] introduced an environment-based 
multi-scale fusion method CAHMT based on the 
hidden Markov tree model HMT to achieve multi-
scale segmentation of strip surface defects, which 
greatly reduced the error rate of fine-scale 
segmentation and the complexity of the algorithm. 
In 2018 [19], a saliency detection model of double 
low-rank sparse decomposition (DLRSD) was 
proposed to obtain the defect foreground image. 
Finally, the Otsu method was used to segment the 
steel plate surface defects, which improved the 
robustness to noise and uneven illumination. In 
2019, [20] detected strip surface defects based on 
a simple guidance template. By sorting the gray 
level of the image, the sorted test image was 
subtracted from the guidance template to realize 
the segmentation of the strip surface defects. In the 
same year, Wang et al. [21] constructed a compact 
model by mining the inherent prior of the image, 
which provided good generalization for different 
inspection tasks (e.g., hot-rolled strip, rails) and 
had good robustness. 
 
E. Shape Feature-Based Methods 

Shape feature-based methods are also 
very effective defect detection methods. These 
methods obtain image features through shape 
descriptors, so the accuracy of the shape 
description becomes the key to the merit of the 
image defect recognition algorithm. A good shape 
descriptor should have the characteristics of 
geometric invariance, flexibility, abstraction, 
uniqueness, and completeness. The commonly 
used shape descriptors can be divided into two 
categories: one is the contour shape descriptor, 
which is used to describe the outer edge of the 
object area, and the other is the area shape 
descriptor, which is used to describe the whole 
object area. The common methods based on 
contour shape descriptors are Fourier transform 
and Hough transform, etc. For the method using 
Fourier transform, it mainly uses the closure and 

periodicity of the region boundary to convert the 
two- dimensional problem into a one-dimensional 
problem. For example, Yong-hao et al [22] enables 
the detection of longitudinal cracks on the surface 
of the continuous casting plate in a complex 
background by calculating the Fourier magnitude 
spectrum of each sub-band to obtain features with 
translational invariance. In addition, Hwang et al. 
[23] used linear discriminant analysis using short-
time Fourier transform pixel information 
generated from ultrasound guided wave data to 
achieve defect detection on 304SS steel plates. The 
Hough transform methods use the global features 
of the image to connect the edge pixels to form a 
regionally closed boundary. For example, Wang et 
al. in 2019 [24] achieved the detection of product 
surface defects by using the fast Hough transform 
in the region of interest (ROI) extraction stage to 
detect the boundary line of the light source. 
Regional shape features include the length and 
width, elongation, area ratio, and other aggregate 
shape parameter methods, which is a simple shape 
expression method. In addition, moments are a 
more reliable and complex region shape feature 
including geometric moments, central moments, 
etc. As Hu invariant moments [25], moment 
expressions are commonly used to describe the 
shape of steel surface defect regions. As Hu et al. 
[26] used both Fourier descriptors and moment 
descriptors to extract the shape features of steel 
strip surface defect images, in addition to the 
grayscale features and geometric features of the 
images, and finally support vector machine (SVM) 
was used to classify the defects in the steel strip 
surface images. For shape feature extraction, it 
must be built on image segmentation and is 
extremely dependent on the accuracy of image 
segmentation. For both methods, based on texture 
features and shape features, they can also be used 
in combination. For example, Hu et al. [27] 
proposed a classification model based on the 
hybrid chromosome genetic algorithm (HCGA) and 
combined geometric, shape, texture and grayscale 
features to identify and classify steel strip surface 
defects. 

Table 1: Comparative Analysis of Different 
Approaches 

 
Author Classifiers/Models Accuracy 
Ahmet 

Feyzioglu et 
al. (2023) 

RF, LR, DT, SVM 74–79% 

Yu Cheng et 
al. (2021) 

CNN 80.25% 

Renjie Tang 
et al. (2020) 

YOLOv3, Faster R-
CNN 

71–72% 

Weidong 
Zhao et al. 

(2021) 

Faster R-CNN, 
RetinaNet 

60–75% 



Komal Raju Nimsarkar et. al., International Journal of Advanced innovative Technology in Engineering, 2024, 9(4), PP 1-9 
 

 
 
© International Journal of Advanced Innovative Technology in Engineering  8 

CHALLENGES IN STEEL PLATE DEFECT DETECTION 

Despite advancements, several challenges remain: 
• Data Scarcity: High-quality, labeled defect 

datasets are limited. 
• Class Imbalance: Some defects occur 

rarely, making classification difficult. 
• Small Defect Size: Fine cracks and small 

surface defects are harder to detect. 
• Real-Time Requirements: Many industrial 

systems require fast and efficient models 
for real-time inspection. 

• Generalization: Models trained on specific 
datasets may not generalize well across 
different steel types or production 
conditions. 

 
CONCLUSION 

Steel plate defect detection using machine learning 
and deep learning has made remarkable progress, 
moving from traditional feature-based models to 
automated feature extraction using CNNs. 
MobileNetV2, with its lightweight yet powerful 
architecture, has demonstrated superior 
performance, making it highly suitable for 
industrial applications. However, challenges like 
data scarcity, real-time requirements, and 
generalization issues still need to be addressed. 
Continued research in transfer learning, data 
augmentation, and real-time deployment will 
further advance the field, making automated defect 
detection an indispensable part of modern 
manufacturing processes. 
 

FUTURE SCOPE 
Future research should focus on: 
 
Transfer Learning: Fine-tuning pre-trained models 
on steel defect datasets can improve performance 
with limited data. 
Data Augmentation: Techniques such as rotation, 
flipping, and noise addition can help address data 
scarcity. 
Anomaly Detection: Implementing unsupervised 
or semi-supervised learning to detect unknown 
defects. 
 
Explainable AI (XAI): Developing models that 
provide interpretable predictions to build trust in 
industrial applications. 
Edge Deployment: Optimizing models like 
MobileNetV2 for deployment on edge devices for 
real-time factory automation. 
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