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1. INTRODUCTION 

The primary objective of wireless 

communication technology is to facilitate high-speed 

data transmission for ubiquitous personal and 

multimedia communication, irrespective of location 

or mobility. However, the wireless channel 

introduces several distortions into the transmitted 

signal, including inter symbol interference (ISI), 

multipath fading, and additive noise. As fifth-

generation (5G) mobile cellular technology 

predominantly operates as a Multiple Input Multiple 

Output (MIMO) system, comprising numerous 

Single Input Single Output (SISO) channels 

connecting various antennas, its key objectives 

include supporting higher data rates and delivering 

seamless services across diverse wireless devices and 

networks. Consequently, it is plausible to consider 

leveraging multiple SISO channel estimations as a 

foundation for MIMO channel estimation. It is 

expected that the complexity of Deep Learning-based 

Channel Estimation (CE) in Multiple Input Multiple 

Output (MIMO) systems will escalate exponentially 

with the number of antennas. This will lead to a 

significant increase in complexity during both the 

online and offline phases, necessitating the adoption 
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O-OFDMNet, an intensity-modulated direct detection transmission system, 

employs deep learning-aided optical orthogonal frequency division 

multiplexing (O-OFDM). O-OFDMNet utilizes deep neural networks (DNNs) 

to convert a complex-valued signal at the transmitter into a non-negative 

signal in the time domain and vice versa at the receiver. Unlike traditional 

radio frequency (RF) OFDM, O-OFDMNet retains the related frequency-

domain signal processing. Unlike current O-OFDM schemes which rely on the 

Hermitian symmetry of the spectral-domain signal to ensure the real-

valuedness of the time-domain signal, our approach achieves equivalent 

spectral efficiency to the RF scheme, a milestone previously unattained by 

any existing methods. As an autoencoder architecture, the example shows 

that O-OFDMNet may be taught in an end-to-end manner to simultaneously 

improve the bit errors ratios and the transmission's peak-to-average ratio of 

power.  across frequency-selective channels and additive white Gaussian 

noise environments. Additionally, technique achieves throughput 

comparable to RF-OFDM, significantly surpassing that of traditional O-

OFDM. 
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of suboptimal techniques for MIMO CE estimation 

based on Single Input Single Output (SISO) 

calculations. While the primary focus of this paper is 

on SISO channel estimation, our future research 

endeavors aim to encompass MIMO channel 

estimation while considering complexity constraints. 

Orthogonal Frequency Division Multiplexing 

(OFDM) stands out as a novel strategy employed by 

5G to mitigate inter symbol interference (ISI) and 

fading in multipath scenarios [1]. 

OFDM is renowned for its high spectrum 

efficiency and inherent resilience to multipath fading 

and inter symbol interference (ISI). By adjusting the 

transmitted power and/or modulation order 

independently for each sub-band according to its 

noise background and channel response, OFDM 

enables the attainment of high data rates. However, 

precise Channel Estimation (CE) procedures are 

essential both before and during data transmission to 

ensure accurate bit loading and power adjustment for 

each sub-band. One widely used CE technique is 

Pilot-Aided Channel Estimation (PACE), which 

entails modulating a predetermined subset of OFDM 

carriers (pilots) using a known training sequence. 

The received pilots are then analyzed to estimate 

channel characteristics. The two most commonly 

utilized standard Channel Estimation (CE) 

techniques are Least Squares (LS) and Minimum 

Mean Square Error (MMSE) [2]. Recently, Deep 

Learning (DL) has garnered significant attention in 

communication systems [3-5]. Various approaches in 

DL-based communication systems have been 

proposed to enhance the performance of traditional 

algorithms. These encompass modulation recognition 

[6], signal detection [7], channel equalization [8], 

Channel State Information (CSI) feedback [9], and 

CE [10, 11]. 

 

2. RELATED LITERATURE 
 

In the literature, numerous studies have explored 

channel estimation techniques in Orthogonal 

Frequency Division Multiplexing (OFDM) systems. 

Estimators for Least Squares (LS) and Minimum 

Mean Square Error (MMSE) are discussed in [6]. 

The authors of [7] introduce an MMSE channel 

estimator that fully exploits the frequency response 

of time-varying dispersive fading channels, 

considering both temporal and frequency-domain 

correlations. When considering noise, the MMSE 

method demonstrates superior performance over LS 

in terms of Mean Square Error (MSE). However, this 

approach requires knowledge of specific parameters 

of the channel model and entails additional 

processing power. Conversely, LS is a simpler and 

more straightforward algorithm to implement. 

Some research aims to simplify MMSE-

based channel estimation methods. For instance, a 

new low-rank Linear Minimum Mean Square Error 

(LMMSE) approach to reduce the complexity of the 

filtering matrix is proposed in [9], while [8] presents 

a simplified Linear Minimum Mean Square Error 

(LMMSE) channel estimation algorithm leveraging 

Fourier Transform methodology and aided by 

suitable training sequences. 

The significant potential of Massive MIMO 

(MaMIMO) technology has spurred extensive 

research in channel estimation within these systems 

over the past two decades. In [10], the performance 

of a Multiple-Input-Multiple-Output (MIMO)-

OFDM system trained using linear interpolation on 

data subcarriers and Least Squares (LS) estimation 

on pilot subcarriers is evaluated. For the space-time 

block-coded spatial modulation systems, spline 

interpolation and pilot symbol-based channel 

estimation have been presented in [11] to monitor the 

channel fluctuations in the presence of Rician fading 

channels.  

The results of the simulations demonstrate 

that the closest neighbor and piecewise linear 

interpolation are not as effective as the suggested 

spline interpolation. A methodology for MMSE-

based channel estimate is presented in [12] for 

MaMIMO systems in an effort to lower the overhead 

associated with downlink channel training in FDD 

settings. In order to reduce overhead, just a selection 

of antennas is trained, and the CSI at the antennas 

that remained silent throughout the pilot transmission 

time is computed using MMSE interpolation, which 

makes use of the spatial correlation. 

Moreover, in [13], the authors propose a 

channel interpolation approach that partitions the 

Uniform Rectangular Array (URA) into smaller 

URAs, enabling MMSE interpolation with minimal 

computational cost within each URA. Reference [14] 

introduces a pilot sequence design aimed at 

minimizing errors in MMSE channel estimation. 

When systems encounter pilot contamination, 

alternative works offer estimation techniques that 

either reduce the computational burden of 

conventional estimators or enhance system 

performance [15], [16]. Earlier references endeavor 

to minimize estimation errors and computational 

overhead in MIMO systems by either modifying 

conventional channel estimators or refining parts of 

the estimation process. Recent research focuses on 

employing deep learning techniques in both data-link 

layer and physical layer communications. This trend 

is driven by two primary factors [17]. 

Firstly, while traditional signal processing 

algorithms, relying on mathematical models can only 

approximate the intricacies of real-world 

communication networks, deep learning-based 

methods have the capability to optimize them 

effectively. 

Secondly, deep learning algorithms are 

structured in layers that perform fundamental 

functions. The advancement of massively parallel 

computing architectures, such as Graphics 

Processing Units (GPUs) and specialized circuits, 

facilitates remarkable computational throughput and 

energy efficiency [18], [19].
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Deep Neural Networks (DNNs) are highly 

efficient due to their significant parallel processing 

capabilities. Various aspects of communication 

systems have benefited from the application of deep 

learning techniques, including MIMO signal 

recognition [20], error-correcting codes [21], and 

channel resource allocation [22]. 

Moreover, numerous studies have 

demonstrated the effectiveness of deep learning in 

channel estimation. Some researchers have employed 

Convolutional Neural Network (CNN) architectures 

to emulate the successful outcomes of image 

processing in addressing the channel estimation 

challenge. For instance, in [23], CNN is utilized to 

estimate the channel response by modeling the time-

frequency channel response as a 2D image. 

Similarly, in [24], intricate CNN architectures 

leverage characteristics of the modified angle-delay 

domain and the spatial-frequency domain for channel 

estimation. 

In [25], the authors explore the efficacy of various 

2D-CNN designs and 3D-CNN architectures, 

leveraging the spatial correlation inherent in the 

MIMO-OFDM channel. Additionally, a recurrent 

neural network (RNN) is developed to further exploit 

temporal domain correlation [25]. 

However, the primary focus of this study 

lies on channel estimation using Deep Neural 

Networks (DNNs). In [26], DNNs are employed for 

signal detection and channel estimation in OFDM 

systems. The wireless channels and OFDM 

modulation are treated as "black boxes" by the 

models. Consequently, the proposed deep learning-

based method indirectly estimates Channel State 

Information (CSI). 

For applications requiring the entire channel 

response, the approach mentioned above may not 

adequately discern the time-frequency channel 

response. In [27], the authors propose a deep 

learning-based DNN channel estimation method 

tailored for doubly selective OFDM channels (both 

frequency and time). The proposed system consists 

of three main components: 

 

1. Pre-training, where weights are initialized. 

2. Training, aimed at instructing the channel 

estimation technique. 

3. Testing, and evaluating the DNN's 

performance on unseen data. 

 

The authors feed various inputs to the DNN, 

including transmitted pilot symbols during both 

training and testing stages, as well as information 

symbols during pre-training, alongside the LS-based 

pilot estimate. 

 

 

 

 

3. PROPOSED LSTM NEURAL NETWORK 
 

 
 

Figure 1. System model of DL-based channel 

estimation 

 
 

Figure 2. The flow chart of the proposed LSTM 

neural network 

 

Model Training: The model is trained under the 

assumption that wireless channels contain hidden 

data and that OFDM modulation is utilized. In recent 

years, researchers have developed several channel 

models that leverage channel data to characterize the 

channel. The received OFDM signal is acquired 

amidst noise and channel distortion within an OFDM 

frame. Training data is compiled from both the 

original signal and the received signal. 

For the DL model input, a pilot block and a 

data block are provided. To construct what the term a 

"Feature vector" for both the training and testing 

stages, the real and imaginary components of a 

complex input vector are extracted. Subsequently, 

these values are combined to form a double-size real-

data vector, as depicted in Figure 8 [2].
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During the training phase, these feature vectors are 

fed into the Long Short-Term Memory (LSTM) 

model in batches, along with the corresponding 

target symbols. The LSTM model is trained to 

predict the matching symbol for each extracted input 

feature vector during both testing and prediction 

stages. 

The training process aims to minimize the 

disparity between the original message and the 

output generated by the neural network. This 

optimization ensures that the model learns to 

accurately predict the symbols based on the input 

feature vectors. 

 

The L2 loss function is indicated below. 

 

Y(k) = X(k) ⋅ H(k) + W(k) 

 

 
 

Figure 3. The proposed deep neural network for 

estimating complex input vector 

 
4. SIMULATION RESULTS 

The performance of DL approaches for combined 

Channel Estimation (CE) and symbol identification 

in OFDM wireless communication systems is 

elucidated through three MATLAB script files. 

The first script demonstrates the process of 

generating training and validation data for the DL 

model within a single-user OFDM system. 

Validation and training data are collected for a single 

subcarrier, focusing on specific parameters. Each 

transmitted OFDM packet contains one data symbol 

and one pilot symbol. The pilot sequence may 

include a mixture of data symbols. 

Each training sample is represented by a 

feature vector structured similarly to the sequence 

classification MATLAB example using an LSTM 

network. It encompasses every symbol received in an 

OFDM packet. 

The second script configures the training 

settings for the DNN. It utilizes the training data for a 

specified subcarrier to train the DNN model. 

The third script is responsible for conducting model 

testing. It generates testing data and evaluates the Bit 

Error Rate (BER) using DL, LS, and MMSE 

methods for each signal-to-noise ratio (SNR) point. 

 

 

System parameters  

The simulation was carried out under the 

OFDM system settings. Perfect synchronization was 

assumed, and a guard interval larger than the 

maximum delay spread was selected to mitigate 

Intersymbol Interference (ISI). 

Various channel models and signal-to-noise ratios 

(SNRs) were employed in the simulations. In our 

setup, SNR represents the Energy per Symbol per 

Noise Power Spectral Density (Es/No). 

 

CHANNEL MODEL  
To design and evaluate a wireless 

communication system effectively, a thorough 

understanding of the channel model is crucial. 

Currently, two-channel models are under 

consideration for link-level evaluations in 5G: 

 

Clustered Delay: This model represents the wireless 

channel as consisting of clusters of paths, where each 

cluster represents a group of paths with similar delay 

characteristics. This model is particularly useful for 

simulating environments with rich multipath 

propagation, such as urban or indoor scenarios. 

 

Tapped Delay Line (TDL): The TDL model 

represents the wireless channel as a sum of delayed 

and attenuated versions of the transmitted signal, 

known as taps. Each tap represents a distinct 

propagation path, characterized by its delay and 

attenuation. This model is widely used for simulating 

various channel conditions, including Line-of-Sight 

(LOS) and Non-Line-of-Sight (NLOS) scenarios. 

 

 
Figure 4. Simulation Result When Using TDL 

Channel Model 

 

 
Figure 5. Simulation Result When Using 3GPP 

TR38.901 Channel Model 
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Figure 6. The LSTM network model training 

 

CONCLUSION 
In the initial phase of the project, 

considerable effort was dedicated to researching and 

gathering bibliographical material to identify prior 

work as a starting point and to pinpoint potential 

applications. Two distinct case studies, namely the 

channel estimation and feedback reporting modules, 

were selected based on this early investigation. 

Instead of relying on conventional 

algorithms, specific deep neural networks were 

developed and integrated into the New Radio link 

simulator, which was created in the laboratories of 

Telecom Italia. These deep-learning solutions were 

implemented to enhance the performance of both the 

channel estimation and feedback reporting modules 

within the simulator's physical blocks. 

In the final stage of the project, after 

completing the implementation work, a simulation 

and performance assessment phase was initiated. 

However, the data obtained did not support the 

assertion that significant gains would arise from 

integrating deep learning methods into the physical 

transmission chain of 5G systems. 

While conventional algorithms may 

leverage mathematical models to simplify and 

approximate reality, deep learning solutions have the 

potential to outperform these regular algorithms, 

especially in scenarios where mathematical models 

may not fully capture the complexities of real-world 

environments. 
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