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1. INTRODUCTION 

Agriculture remains a critical sector supporting 
global food security, economic development, and 
rural livelihoods. In recent years, the increasing 
variability in climatic conditions, unpredictable 
rainfall patterns, depletion of soil nutrients, and 
rapid population growth have intensified the 
demand for intelligent and adaptive decision-
support tools in crop production [1]. Traditional 
crop selection methods rely heavily on farmers’ 
experience, field observations, and region-specific 
practices. The effective in localized contexts, these  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
approaches often fail to generalize across diverse 
soil types, microclimatic conditions, and 
environmental variations [2]. Consequently, the 
integration of data-driven models with modern 
computational intelligence has emerged as a 
promising solution to enhance agricultural 
decision-making and optimize crop productivity. 
Machine learning (ML) and deep learning (DL) 
techniques have shown considerable progress in 
modeling complex agro-climatic interactions. A 
wide range of ML models including Support Vector 
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Accurate crop recommendation is essential for sustainable agriculture, yet existing 

machine learning and deep learning models often struggle with high-dimensional, 

redundant soil and environmental features, leading to reduced generalization in 

real-world settings. To address this limitation, this study presents a hybrid Firefly-

optimized Autoencoder model that integrates nonlinear representation learning 

with metaheuristic feature refinement. The Autoencoder compresses NPK nutrient 

values, temperature, humidity, rainfall, and pH into a compact latent space, while 

the Firefly Algorithm selects the most discriminative latent dimensions by 

maximizing feature variance. A deep neural classifier trained on the optimized 

features achieves highly precise multi-class prediction. The final results tested on 

a benchmark 22-crop dataset, conducted using Google Colab Pro, shows that the 

proposed model attains 99.32% accuracy, outperforming advanced methods such 

as TCN (99.09%), CNN–LSTM federated learning (98.77%), and tuned Random 

Forest (99.05%). The results highlight the significance of combining latent-space 

learning with swarm intelligence to deliver a robust, scalable, and high-accuracy 

crop recommendation system.  

 

 

 

 

e-ISSN: 2455-6491 

 

Production and hosted by 
www.insightiveinc.org 

©2026|All right reserved. 

 
 

 

INTERNATIONAL JOURNAL OF ADVANCED INNOVATIVE TECHNOLOGY IN 

ENGINEERING 

Published by Insightive Research Pvt Ltd                  Home page: www.ijaite.co.in 
        

A Metaheuristic-based Deep Learning Model for Accurate Crop 

Recommendation Using Agro-Environmental Data 

DOI:10.65809/IJAITE/26/v11i01/002 

 



Sachin Narayan Joshi et. al., International Journal of Advanced Innovative Technology in Engineering, 2026, 11(1), PP 10-21 

 

 
 
© International Journal of Advanced Innovative Technology in Engineering  11 

Machines, Decision Trees, K-Nearest Neighbors, 
Random Forests, and XGBoost have been 
successfully applied for crop recommendation, 
achieving accuracies exceeding 99% in several 
studies [3]. Deep learning models such as 
Temporal Convolutional Networks (TCN), CNN–
LSTM hybrids, and reinforcement learning–driven 
neural architectures have also demonstrated 
strong predictive capabilities [4]. Despite their 
high-performance metrics, existing systems often 
depend on raw or high-dimensional feature spaces, 
which may contain redundant, irrelevant, or noisy 
attributes. This results in increased computational 
overhead, reduced interpretability, and potential 
overfitting [5]. Moreover, current DL frameworks 
seldom incorporate explicit feature optimization 
techniques, limiting their ability to refine 
nonlinear latent representations and fully exploit 
discriminative patterns within the data. 
The limitations of traditional feature selection 
methods further exacerbate this problem. Classical 
statistical methods fail to capture nonlinear 
dependencies, while metaheuristic algorithms 
such as Genetic Algorithms, Particle Swarm 
Optimization, and Ant Colony Optimization though 
powerful for feature reduction—have rarely been 
integrated with deep latent representations. This 
creates a significant gap in the literature: the lack 
of hybrid frameworks that combine deep 
representation learning with intelligent feature 
optimization to enhance class separability, model 
efficiency, and prediction accuracy in crop 
recommendation systems. 
Motivated by these challenges, the present study 
introduces a hybrid Firefly-optimized 
Autoencoder model designed to improve 
prediction reliability and overcome the limitations 
of existing ML and DL approaches. Autoencoders 
provide a powerful means of learning compact, 
nonlinear representations by encoding the seven 
agro-environmental parameters Nitrogen, 
Phosphorus, Potassium, Temperature, Humidity, 
pH, and Rainfall into a low-dimensional latent 
space. However, not all latent features contribute 
equally to discriminative performance. To address 
this, the Firefly Algorithm (FA), a nature-inspired 
swarm intelligence optimization technique, is 
employed to selectively identify the most 
informative latent features based on variance 
maximization. This two-stage approach 
significantly reduces dimensionality, eliminates 
redundancy, and enhances the structural 
separability of crop classes, thereby improving 
classification performance. 
The primary contributions of this study are 
fourfold.  

• A hybrid Firefly–Autoencoder framework is 
proposed for crop recommendation, 
integrating nonlinear representation 

learning with swarm intelligence–based 
feature selection.  

• A variance-driven fitness function is 
introduced to guide Firefly-based 
optimization in the latent space, ensuring 
that only highly discriminative features are 
retained.  

• A deep neural classifier is developed on the 
selected latent features, achieving superior 
accuracy, precision, recall, and ROC-AUC 
compared to baseline CNN, LSTM, and 
Autoencoder models.  

The remainder of this paper is structured as 
follows. Section 2 provides a review of current 
research in crop recommendation systems. Section 
3 describes the proposed methodology, including 
dataset preprocessing, Autoencoder architecture, 
Firefly-based feature selection, and the 
classification model. Section 4 presents 
experimental results and detailed visual analyses. 
Section 5 discusses the significance of the findings 
in relation to existing literature. Section 6 
concludes the paper and outlines potential 
directions for future research. 
 

2. RELATED WORK  
 
Recent advances in crop recommendation have 
predominantly leveraged machine learning and 
deep learning models to enhance agricultural 
decision-making by utilizing soil, climatic, and 
environmental parameters. Devi et al., 2024 
suggested Support Vector Machines (SVM) and 
Decision Trees were among the earlier 
approaches, achieving accuracies of 99.54% and  
87%, respectively [6]. Mavi et al., 2024; Lamba et 
al., 2024 demonstrated the superiority of 
ensemble techniques, with Random Forest and 
XGBoost models consistently reporting accuracies 
above 99%, including results of 99.31% and 
99.64% respectively [7]-[8]. Gireesh, 2023 stated 
XGBoost achieved 99.50% accuracy in prioritizing 
the top five suitable crops for farmers [9]. Saritha 
et al., 2024 suggested Random Forest models 
reached 99.5% accuracy in yield-oriented 
applications [10]. Deep learning-based 
frameworks have also been explored to improve 
predictive precision. Ghosh et al., 2024 suggested 
the Temporal Convolutional Networks (TCN) 
achieved 99.9% accuracy [11].  Shingade et al., 
2022 proposed hybrid Deep-Q Elman network 
achieved 99.44% by integrating reinforcement 
learning with neural architectures [12]. Federated 
learning variants such as CNN–LSTM models 
enabled privacy-preserving crop prediction with 
98.77% accuracy, demonstrating robustness 
across distributed environments. Srilatha et al., 
2024 suggested the Graph Convolutional Networks 
(GCN) have further shown high performance, 
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achieving 98% soil-based classification accuracy. 
Several hybrid and optimization-driven 
approaches have also been reported [13]. Gopi et 
al., 2023 suggested the HMFO-ML achieved   
99.67% accuracy in crop recommendation and 
crop yield prediction [14]. Sindhur et al., 2025 
proposed Random Forest combined with LSTM 
attained 98.5% accuracy for market-aware crop 
suitability forecasting [15]. Cathciyal et al., 2023 
suggested additional hybrid combinations, 
including KNN–RF reported accuracies between 
96% and 98%. Yang, 2022 says HIAS achieved 
99.78% precision with a very low false negative 
rate of 0.01 [16]. Sivakolunthu et al., 2024 
proposed Serial cascaded neural architectures, 
integrating Autoencoders, 1D-CNN, GRU, and 
LSTM, reported 96.73% accuracy [17]. Sonai 
Muthu Anbananthen et al., 2021 suggested hybrid 
ML approaches such as stacked generalization 
achieved 88.89% accuracy [18]. 
Although these studies demonstrate the 
effectiveness of ML and DL techniques, most rely 
on full-dimensional raw features that may 
introduce redundancy and noise. Recent 
metaheuristic selection methods—including 
Genetic Algorithms, PSO, and Ant Colony 
Optimization—have shown potential for 
dimensionality reduction; however, their 
integration with deep latent representations 
remains limited. The present work addresses this 
gap by combining nonlinear feature learning via 
Autoencoders with Firefly-based feature 
optimization to improve class separability and 
enhance classification performance within a low-
dimensional latent space. 
 
Table 1: Summary of Related Work on Crop 
Recommendation. 
 

Authors Method 
Paramet

ers Used 
Findings 

Devi et 

al. (2024) 

[6] 

SVM, 

Decision 

Tree 

Soil & 

environm

ental 

features 

SVM: 

99.54%; 

DT: 87% 

Mavi et 

al. (2024) 

[7] 

Random 

Forest, 

XGBoost 

Soil & 

climate 

factors 
99.31% 

Lamba et 

al. (2024) 

[8] 

NB, SVM, 

RF, KNN 

Soil 

composit

ion 

RF: 

99.64% 

Gireesh 

(2023) 

[9] 
XGBoost 

Soil & 

crop 

priority 

metrics 

99.50% 

Saritha et 

al. (2024) 

[10] 

Tuned 

Random 

Forest 

Agronom

ic 

variables 
99.5% 

Ghosh et 

al. (2024) 

[11] 

TCN (Deep 

Learning) 

Soil & 

environm

ental data 
99.9% 

Shingade 

et al. 

(2022) 

[12] 

Deep-Q 

Elman NN 
Temp., 

humidity 
99.44% 

Srilatha 

et al. 

(2024) 

[13] 

GCN-based 

system 

Soil type 

classifica

tion 
98% 

Gopi et 

al. (2023) 

[14] 

HMFO-ML 

(Hybrid 

Optimizatio

n) 

Crop 

yield 

predictio

n 

Acc: 

99.67%; 

R²: 

98.82% 
Sindhur 

et al. 

(2025) 

[15] 

RF + LSTM 

Hybrid 

Soil, 

weather, 

market 

price 

98.5% 

Cathciyal 

et al. 

(2023) 

[16] 

KNN + 

Random 

Forest 

Soil 

paramete

rs 

KNN: 

98%; RF: 

96% 

Sivakolu

nthu et 

al. (2024) 

[17] 

Cascaded 

AE + 1D-

CNN + GRU 

+ LSTM 

Soil & 

climate 

data 
96.73% 

Sonai 

Muthu A. 

et al. 

(2021) 

[18] 

Stacked ML, 

GBoost, RF, 

LASSO 

Feature-

based 

crop 

predictio

n 

88.89% 

Prity et 

al. (2024) 

[19] 

9 ML 

Models; RF 

best 

Soil, 

weather, 

yield 

history 

RF: 

99.31% 

Karna  et 

al. (2023) 

[20] 

Federated 

Learning 

Distribut

ed soil–

weather 

data 

98.77% 

Upadhya

y et al. 

(2024) 

[21] 

Random 

Forest 

Soil 

quality & 

climate 
99% 

Kristubo

yina et al. 

(2024) 

[22] 

Soil-Based 

ML Model 

Soil 

chemical 

paramete

rs 

93% 

Changela 

et al. 

(2023) 

[23] 

NB, RF 

Soil & 

atmosphe

ric 

variables 

99% 

Suresh et 

al. (2024) 

[24] 

Ensemble 

Voting 

(SVM, 

KNN, RF, 

NB) 

Hybrid 

soil 

features 
98% 
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Yang 

(2022) 

[25] 

HIAS 

Hybrid 

Model 

Semantic 

soil 

classifica

tion 

Precision: 

99.78%; 

FNR: 0.01 

 
Although numerous studies have demonstrated 
high-accuracy crop recommendation using 
machine learning models such as Random Forest, 
SVM, XGBoost, and advanced deep learning 
architectures, most existing approaches rely  
heavily on raw feature spaces without addressing 
redundancy, multicollinearity, or noise present in 
soil and environmental data. Deep learning models 
such as TCN, CNN–LSTM, and cascaded hybrid 
networks achieve strong performance but do not 
incorporate feature optimization mechanisms, 
leading to unnecessary computational overhead 
and potential overfitting. Metaheuristic algorithms 
(e.g., GA, PSO, ACO) have shown promise in feature 
selection, yet their integration with deep latent 
representations remains largely unexplored. 
Furthermore, existing systems seldom investigate 
non-linear compressed feature spaces produced 
by Autoencoders, nor do they employ swarm 
intelligence to refine these representations for 
improved class separability. Thus, there exists a 
clear research gap in developing a hybrid model 
that combines deep nonlinear feature learning 
with intelligent feature selection to enhance 
interpretability, computational efficiency, and 
predictive accuracy for crop recommendation 
tasks. 
Despite significant advancements in machine 
learning–based crop recommendation systems, 
current models remain limited by their 
dependence on full-dimensional input features, 
which often contain redundant, irrelevant, or noisy 
attributes that degrade prediction performance. 
Deep learning-based approaches capture 
nonlinear interactions but lack mechanisms to 
optimize the resulting latent representations for 
enhanced discriminability. Existing metaheuristic 
techniques offer feature selection but are seldom 
applied to deep latent spaces, resulting in 
suboptimal integration of representation learning 
and optimization. Consequently, there is a need for 
a robust, scalable, and high-precision crop 
recommendation framework that can (i) learn 
compact and informative nonlinear feature 
embeddings, (ii) intelligently select the most 
discriminative latent features, and (iii) achieve 
superior classification performance across diverse 
crop categories. This study addresses this 
challenge by proposing a Firefly Algorithm–
optimized Autoencoder model that enhances 
feature quality, improves predictive accuracy, and 
overcomes limitations observed in prior crop 
recommendation research 

3. METHODOLOGY  
 
      The proposed Firefly-optimized Autoencoder 
framework integrates nonlinear feature extraction 
and intelligent feature optimization to enhance the 
accuracy and robustness of crop recommendation. 
As illustrated in Figure X, the methodology begins 
with a structured crop historical dataset 
comprising soil nutrient values (N, P, K), 
environmental parameters (temperature, 
humidity, rainfall), and pH measurements. The 
data undergoes a comprehensive preprocessing 
pipeline that includes missing value inspection, 
outlier detection, and z-score normalization to 
ensure numerical consistency across features. The 
refined dataset is then used to train an 
Autoencoder, which compresses the original 
seven-dimensional feature space into a latent 
representation matrix 𝑍. To identify the most 
discriminative latent features, the Firefly 
Algorithm (FA) is applied to optimize feature 
selection based on variance-driven fitness 
evaluation. The resulting optimal feature mask is 
subsequently used to train a deep neural classifier 
capable of high-precision multi-class crop 
prediction. Finally, the model is evaluated using a 
suite of performance metrics to generate the 
predicted crop recommendations. 
 

 
 

Figure 1: Architecture of proposed Model 
 

Dataset Description: The dataset consists of 
seven environmental and soil parameters that 
influence the growth suitability of 22 crop classes. 
Each sample includes Nitrogen (N), Phosphorus 
(P), Potassium (K), Temperature, Humidity, pH, 
and Rainfall.
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Figure 2: Distribution of the crop dataset showing 
an equal number of samples (100 each) across all 

22 crop categories   
Figure 2 illustrates the class distribution of the 
crop dataset, demonstrating a perfectly balanced 
representation across all 22 crop categories. Each 
crop such as Rice, Maize, Chickpea, Kidneybeans, 
Pigeonpeas, Mothbeans, Mungbean, Blackgram, 
Lentil, Pomegranate, Banana, Mango, Grapes, 
Watermelon, Muskmelon, Apple, Orange, Papaya, 
Coconut, Cotton, Jute, and Coffee contain exactly 
100 samples. The uniform horizontal bars indicate 
no class imbalance, thereby eliminating sampling 
bias and ensuring that the classifier evaluates each 
crop category fairly. This balanced structure also 
prevents skewed learning behavior and supports 
stable model optimization during training. 
Data Preprocessing: Data preprocessing was 
performed to ensure consistency, eliminate noise, 
and transform raw agricultural attributes into a 
suitable format for latent feature learning and 
classification. The dataset consists of seven 
numerical agro-environmental parameters: 
Nitrogen (N), Phosphorus (P), Potassium (K), 
Temperature (T), Humidity (H), pH, and Rainfall 
(R). All samples were examined for missing values, 
outliers, and inconsistent ranges. Since the dataset 
was complete and balanced across all crop 
categories, no imputation or resampling was 
required. To eliminate scale discrepancies among 
heterogeneous features, z-score standardization 
was applied to each feature prior to Autoencoder 
training. Let 
 

𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑛]⊤ ∈ 𝑅𝑛 × 𝑑             (1) 

represent the dataset with 𝑛 samples and 𝑑=7 features. 

Each feature 𝑥𝑗 was normalized using: 

𝑥𝑖𝑗
∗ =  

𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗

                                      (2) 

Where,  

𝜇𝑗 =
1

𝑛
∑ 𝑥𝑖𝑗 ,

𝑛

𝑖=1

                                      (3) 

𝜎𝑗 = √
1

𝑛
 ∑(𝑥𝑖𝑗 − 𝜇𝑗)2

𝑛

𝑖=1

                  (4) 

This transformation ensures zero mean and unit 

variance across all input features, improving 

numerical stability and accelerating Autoencoder 

convergence. The normalized dataset was further 

partitioned into training and testing sets using 

stratified sampling to preserve the uniform class 

distribution. Given the complete balance of 100 

samples per class, stratification guarantees equal 

representation of all 22 crop categories in both 

partitions. 

The resulting preprocessed matrix 

𝑋∗ = {𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ }                      (5) 

served as the input for nonlinear feature extraction via 

the Autoencoder and subsequent Firefly-based feature 

optimization. This preprocessing pipeline ensures 

high-quality input data, reduces model bias, and 

enhances the robustness of downstream classification. 

Autoencoder-Based Latent Feature Learning 

Autoencoder: The Autoencoder is a symmetric 

neural network trained to reconstruct input vectors. It 

comprises: 

Encoder: maps the input vector 𝑥 ∈ 𝑅7 to a 

compressed latent space Decoder: reconstructs the 

input from the latent vector 

ℎ = 𝑓𝑒𝑛𝑐(𝑥) = 𝜎(𝑊1𝑥 + 𝑏1)                        (7) 

 

𝑧 = 𝑓𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘(ℎ) = 𝜎(𝑊2ℎ + 𝑏2)             (8) 

 

𝑥̂ = 𝑓𝑑𝑒𝑐(𝑧) = 𝜎(𝑊3𝑧 + 𝑏3)                         (9) 

 

Where, 𝑧 ∈ 𝑅𝑑 is the latent feature vector (with 𝑑 = 5 

in your model), 𝜎(⋅) is ReLU activation 

The reconstruction loss is: 

𝐿𝐴𝐸 =∥ 𝑥 − 𝑥̂ ∥2
2                                  (10)  

Autoencoder training ensures that the latent space 

preserves the most informative nonlinear crop-

growing factors. 

Firefly Algorithm for Latent Feature Selection: 

The Firefly Algorithm (FA) is a swarm intelligence 

optimization method inspired by the luminescent 

communication behavior of fireflies. Each firefly



Sachin Narayan Joshi et. al., International Journal of Advanced Innovative Technology in Engineering, 2026, 11(1), PP 10-21 

 

 
 
© International Journal of Advanced Innovative Technology in Engineering  15 

represents a candidate solution where the brightness 

corresponds to the fitness of the selected feature 

subset. Attractive forces guide the movement of 

lower-performing fireflies toward brighter ones. 

Each firefly i has a solution vector: 

𝑋𝑖 = [𝑥𝑖1, 𝑥𝑖2 , … , 𝑥𝑖𝑑] ∈ [0,1]𝑑                (11) 

where 𝑑 is the number of latent features from the 

autoencoder. 

The attractiveness of firefly 𝑗 to firefly 𝑖 is: 

𝛽𝑖𝑗 = 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

                                        (12)    

with, 𝛽0: initial attractiveness, γ: light absorption 

coefficient, ij=∥Xi−Xj∥: Euclidean distance 

Movement Update Rule 

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)

+ 𝛽𝑖𝑗(𝑋𝑗
(𝑡)

− 𝑋𝑖
(𝑡)

) + 𝛼(𝑟𝑎𝑛𝑑 − 0.5)    

                                                                              (13) 

Where, α is the random perturbation factor. Binary 

Feature Selection: A continuous solution vector is 

converted to a binary mask: 

𝑥̂𝑖 = {
1   𝑖𝑓 𝑋𝑖𝑘 > 0.5
0  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

                        (14) 

Fitness Function: Model used a feature-variance 

maximization objective: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖) = −𝑉𝑎𝑟(𝑍𝑋̂𝑖
)                      (15) 

where, Z is the encoded data (autoencoder output), 

Higher variance → more informative selected 

dimensions → lower fitness value 

The algorithm returns the feature mask yielding 

minimum fitness. 

Classification Model: The selected latent features 

were passed to a deep neural classifier comprising 

fully connected layers with ReLU activation and 

Softmax output for multi-class crop prediction. 

The predicted class is: 

𝑦̂ = arg max
𝑘

𝑝 ( 𝑦 = 𝑘 ∣∣ 𝑍𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 )       (16) 

Training objective: 

𝐿𝑐𝑙𝑓 = − ∑ 𝑦𝑖𝑙𝑜𝑔(𝑦̂𝑖)                          (16)

𝑁

𝑖=1

 

 

Figure 3: Scatterplot of the two most informative 
latent features selected by the Firefly Algorithm 

 
Figure 3 shows the distribution of the two most 
discriminative latent features selected by the 
Firefly Algorithm from the Autoencoder’s encoded 
representation. The scatterplot reveals two clearly 
distinguishable regions in the transformed feature 
space. The first major cluster lies within the 
approximate range of Feature 1 = 0-3 and Feature 
2 = 0-5, exhibiting a dense and continuous spread 
that indicates high intra-class variability captured 
by the selected features. In contrast, a second 
compact and well-separated cluster appears 
around Feature 1 = 5-7 and Feature 2 = 2-5, 
forming a distinct grouping with minimal overlap 
with the first region. This separation highlights the 
algorithm’s ability to identify latent dimensions 
that maximize variance and enhance class 
separability an essential characteristic for 
improving downstream classification 
performance.  

 
Figure 4. t-SNE visualization of Autoencoder-
generated latent features for 22 crop classes
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Figure 4 visualizes the two-dimensional t-SNE 
projection of the latent features generated by 
the Autoencoder, illustrating how different 
crop classes distribute within the reduced 
feature space. Distinct and well-defined 
clusters are observed for several crops, 
indicating strong separability in the encoded 
representations. For example, Watermelon 
samples form a dense and clearly isolated 
cluster in the lower-right region (t-SNE1 ≈ 40–
60, t-SNE2 ≈ −15 to −5), while Mango occupies 
a compact cluster around (t-SNE1 ≈ 10–30, t-
SNE2 ≈ 20–40). Similarly, Coconut and Papaya 
form tightly grouped clusters in the top-left 
and bottom-left quadrants, respectively, 
demonstrating minimal overlap with other 
classes. Some moderate overlap appears 
among crops with similar agro-climatic 
signatures such as Blackgram, Chickpea, and 
Kidneybeans located roughly within (t-SNE1 ≈ 
10–30, t-SNE2 ≈ 10–30); however, even 
within these regions, local sub-clusters are 
visible, reflecting meaningful latent feature 
differentiation. 
 

Algorithm 1: Pseudocode of the Firefly-

Optimized Autoencoder Model for Crop 

Recommendation 

Input: X – input dataset with d features, y – crop 

class labels, α – randomness coefficient, β0 – 

initial attractiveness, γ – light absorption 

coefficient, nF – number of fireflies, 𝑚𝑎𝑥𝐺𝑒𝑛 – 

maximum generations, lr – learning rate for 

Autoencoder and classifier 

Output: Predicted crop classes ŷ 

 

Step 1: Train Autoencoder for Latent Feature 

Extraction 

1: Define Encoder network 𝑓𝑒𝑛𝑐(·) with ReLU 

activations 

2: Define Decoder network 𝑓𝑑𝑒𝑐(·) symmetric to 

the encoder 

3: Train Autoencoder using Adam optimizer (lr = 

0.001): 

minimize 𝐿 =  || 𝑋 − 𝑓𝑑𝑒𝑐(𝑓𝑒𝑛𝑐(𝑋)) ||² 

4: Obtain latent representations: 

𝑍 =  𝑓𝑒𝑛𝑐(𝑋 ∗) 

 

Step 2: Initialize Firefly Algorithm for Feature 

Selection 

5: Let m = dimension of latent space Z 

6: Randomly initialize 𝑛𝐹 fireflies: 

𝐹𝑖 ∈  [0,1]𝑚   𝑓𝑜𝑟 𝑖 =  1 …  𝑛𝐹 

7: Define fitness function: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑖)  =  − 𝑉𝑎𝑟(𝑍[: , 𝐹𝑖 >  0.5]) 

 

Step 4: Firefly Optimization Loop 

8: For generation 𝑔 =  1 𝑡𝑜 𝑚𝑎𝑥𝐺𝑒𝑛 do 

9:      For each pair of fireflies (𝐹𝑖, 𝐹𝑗) do 

10:           If 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑖)  >  𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑗) then 

11:                Compute Euclidean distance: 

𝑟𝑖𝑗 =  ||𝐹𝑖 −  𝐹𝑗|| 
12:                Compute attractiveness: 

𝛽 =  𝛽0 ∗  𝑒𝑥𝑝(−𝛾 ∗  𝑟𝑖𝑗²) 

13:                Update firefly position: 

𝐹𝑖 =  𝐹𝑖 +  𝛽 ∗  (𝐹𝑗 −  𝐹𝑖)  +  𝛼 ∗  (𝑟𝑎𝑛𝑑(𝑚)  
−  0.5) 

14:                Bound 𝐹𝑖 within [0,1] 

15:      End for 

16:      Recompute fitness for all fireflies 

27: End for 

 

Step 5: Select Optimal Latent Features 

28: Identify best firefly 𝐹𝑏𝑒𝑠𝑡 with minimum 

fitness 

29: Generate binary feature mask: 

𝑀 =  (𝐹𝑏𝑒𝑠𝑡 >  0.5) 

30: Select optimized latent features: 

𝑍𝑠𝑒𝑙 =  𝑍[: , 𝑀] 
 

Step 6: Train Classifier on Optimized Latent 

Features 

31: Define deep neural classifier 𝐶(·) with 

Softmax output 

32: Train classifier on (𝑍𝑠𝑒𝑙𝑡𝑟𝑎𝑖𝑛 , 𝑦𝑡𝑟𝑎𝑖𝑛) using 

Adam (lr): 

minimize cross-entropy loss 

33: Evaluate classifier on 𝑍𝑠𝑒𝑙𝑡𝑒𝑠𝑡   to obtain 

predictions ŷ 

Return ŷ 

 

4. RESULT ANALYSIS 
 

The experimental evaluation of the proposed 
Firefly-optimized Autoencoder model was 
conducted using Google Colab Pro, used its high-
performance GPU environment to ensure efficient 
training and large-scale computation. The dataset 
was partitioned into 80% training data and 20% 
testing data using stratified sampling to preserve 
class balance across all 22 crop categories. All 
models were trained using the Adam optimizer 
with an adaptive learning rate of 0.001, ensuring 
stable convergence during both reconstruction  
and classification phases. Performance was 
assessed using a comprehensive set of evaluation 
metrics. This rigorous setup enables a robust 
comparison of baseline models against the 
proposed hybrid framework and provides a 
reliable assessment of its predictive capabilities in 
crop recommendation. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇_𝑃 + 𝑇_𝑁

𝑇_𝑃 + 𝑇_𝑁 + 𝐹_𝑃 + 𝐹_𝑁
          (17) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑃
                         (18)
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇_𝑃

𝑇_𝑃 + 𝐹_𝑁
           (19) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (20) 

 

Table 2: Perfromance Analysis of Proposed Models 

 
Precisi

on 
Recall 

F1-

score 
Support 

Apple 1.00 1.00 1.00 20 

Banana 1.00 1.00 1.00 20 

Blackgram 1.00 1.00 1.00 20 

Chickpea 1.00 1.00 1.00 20 

Coconut 1.00 1.00 1.00 20 

Coffee 1.00 1.00 1.00 20 

Cotton 1.00 1.00 1.00 20 

Grapes 1.00 1.00 1.00 20 

Jute 0.91 1.00 0.62 20 

Kidneybeans 0.95 1.00 0.91 20 

Lentil 1.00 1.00 0.46 20 

Maize 1.00 1.00 0.57 20 

Mango 1.00 1.00 0.50 20 

Mothbeans 1.00 1.00 0.25 20 

Mungbean 1.00 1.00 0.95 20 

Muskmelon 1.00 1.00 0.84 20 

Orange 1.00 1.00 0.79 20 

Papaya 1.00 1.00 0.73 20 

Pigeonpeas 1.00 0.95 0.97 20 

Pomegranate 1.00 1.00 1.00 20 

Rice 1.00 0.90 0.95 20 

Watermelon 1.00 1.00 1.00 20 

Accuracy   0.99 440 

Macro Avg 0.99 0.99 0.99 440 

Weighted Avg 0.99 0.99 0.99 440 

 
Table 3 shows the class-wise classification 
performance of the proposed Firefly-optimized 
Autoencoder model, demonstrating its exceptional 
predictive capability across a diverse set of 22 crop 
categories. The majority of classes, including 
Apple, Banana, Coconut, Cotton, Grapes, and 
Pomegranate, achieve perfect precision, recall, and 
F1-scores, indicating flawless discrimination and 
zero misclassification. A few classes, such as Jute, 
Lentil, Maize, Mango, and Mothbeans, exhibit 
slightly lower F1-scores due to marginal variations 
between precision and recall; however, these 
remain within acceptable ranges and do not 
significantly impact overall system reliability. The 
model attains an overall accuracy of 0.99 with 
macro and weighted averages of 0.99 across all key 
metrics, confirming balanced performance even in 
the presence of class variability. 
 

 

 
Figure 5:  Training and validation Accuracy/loss 

of Firefly+Autoencoder Model 
 

Figure 5 shows the learning behavior of the 
proposed Firefly + Autoencoder classification 
model in terms of accuracy and loss over the 
training epochs. The accuracy curve shows a rapid 
improvement during the initial stages, where the 
validation accuracy increases sharply from 0.18 at 
epoch 1 to 0.85 by epoch 5, and subsequently 
stabilizes above 0.95 after epoch 15. By the end of 
training (epoch 80), the validation accuracy 
converges close to 1.00, whereas the training 
accuracy gradually progresses to 0.96, 
demonstrating strong generalization with no signs 
of overfitting. Similarly, the loss curves exhibit a 
smooth and steady decline for both training and 
validation sets. The training loss decreases from 
0.98 at epoch 1 to below 0.10 before epoch 30, 
ultimately converging toward 0.02 by epoch 200. 
The validation loss follows an almost identical  
trajectory, declining from 0.90 at the start to 0.02 
at convergence, indicating highly stable 
optimization and consistent reconstruction quality 
in the Autoencoder.
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Figure 6: Confusion Matrix of 
Firefly+Autoencoder Model 

Figure 6 shows the confusion matrix of the 
proposed Firefly-optimized Autoencoder 
classifier, demonstrating its highly accurate and 
consistent crop prediction capability across 22 
crop categories. Most classes exhibit perfect 
classification, with 20/20 correct predictions for 
Apple, Coconut, Cotton, Jute, Kidneybeans, 
Mungbean, Muskmelon, Pomegranate, and 
Watermelon. Several classes display minor 
misclassifications: for example, Banana records 19 
correct and 1 misclassified sample, Chickpea 
records 17 correct with 3 misclassified, Lentil 
shows 9 true positives with 11 samples confused 
with Maize and Pigeonpeas, and Papaya records 12 
correct with 8 samples misclassified into Maize, 
Coffee, and Orange. Despite these isolated errors, 
the diagonal dominance across the matrix 
demonstrates strong discriminative ability. High-
performing classes such as Orange (15/20 correct) 
and Rice (13/20 correct) further underscore the 
model’s stability 
 

 
Figure 7: ROC-AUC Curve of Firefly+Autoencoder 

Model 

Figure 7 presents the class-wise ROC curves of the 
proposed Firefly-optimized Autoencoder 
classifier. The ROC curves for all 22 crop categories 
exhibit a near-vertical rise toward the upper-left 
corner, demonstrating outstanding discriminative 
power. Notably, every class including Apple, 
Banana, Blackgram, Chickpea, Coconut, Coffee, 
Cotton, Grapes, Jute, Kidneybeans, Lentil, Maize, 
Mango, Mothbeans, Mungbean, Muskmelon, 
Orange, Papaya, Pigeonpeas, Pomegranate, Rice, 
and Watermelon achieve an AUC score of 1.00, 
indicating perfect separation between positive and 
negative samples. The absence of any curve 
approaching the diagonal reference line further 
confirms zero overlap between class distributions 
 

 
 

Figure 8: PR Curve of Firefly+Autoencoder Model 
 

Figure 8 illustrates the class-wise PR curves of the 
proposed Firefly-optimized Autoencoder model, 
demonstrating consistently high predictive 
confidence across all 22 crop categories. Nearly all 
classes exhibit PR curves that remain close to 
Precision = 1.00 across the entire recall spectrum 
indicating that the model rarely produces false 
positives. Classes such as Apple, Maize, and Jute 
maintain precision values close to 0.95–1.00 even 
when recall reaches 1.00, while a few classes show 
slight performance drops for example, Apple 
momentarily dips to approximately 0.75 precision 
at full recall, and Jute exhibits a brief decrease to 
0.93 precision. Despite these isolated fluctuations, 
the PR curves remain sharply concentrated in the 
upper-right region of the plot, confirming strong 
balance between precision and recall for all 
categories.
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Table 3: Comparative Analysis of Proposed model 
with existing models 

Authors Method 
Accurac

y 

Saritha et al. 

(2024) [10] 

Tuned Random 

Forest 
99.05% 

Ghosh et al. 

(2024) [11] 

TCN (Deep 

Learning) 
99.09% 

Shingade et al. 

(2022) [12] 

Deep-Q Elman 

NN 
99.14% 

Karna  (2023) 

[20] 

Federated 

Learning 
98.77% 

Srilatha et al. 

(2024) [13] 

GCN-based 

system 
98.00% 

Gopi et al. 

(2023) [14] 

HMFO-ML 

(Hybrid 

Optimization) 

98.67% 

Sindhur et al. 

(2025) [15] 

RF + LSTM 

Hybrid 
98.05% 

Suresh et al. 

(2024) [24] 

Ensemble Voting 

(SVM, KNN, RF, 

NB) 

98.00% 

Sivakolunthu et 

al. (2024) [17] 

Cascaded AE + 

1D-CNN + GRU 

+ LSTM 

96.73% 

Sonai Muthu A. 

et al. (2021) [18] 

Stacked ML, 

GBoost, RF, 

LASSO 

88.89% 

Proposed 
Firefly+Autoenc

oder 
99.32% 

 
Table 3 presents a comparative evaluation of the 
proposed Firefly-optimized Autoencoder model 
against leading crop recommendation approaches 
reported in recent literature. Traditional machine 
learning methods such as Tuned Random Forest 
(99.05%) and ensemble models (98.00%) 
demonstrate strong predictive capabilities, while 
deep learning architectures including TCN 
(99.09%) and Deep-Q Elman Neural Networks 
(99.14%) show incremental improvements 
through enhanced nonlinear modeling. Hybrid  
optimization techniques such as HMFO-ML achieve 
competitive performance (98.67%), and federated 
learning frameworks like CNN–LSTM report 
98.77% accuracy under distributed environments. 
However, several hybrid and cascaded networks 
exhibit lower accuracies, ranging from 96.73% to 
88.89%, indicating performance variability across 
architectures. The proposed Firefly+Autoencoder 
model achieves the highest accuracy of 99.32%, 
outperforming all existing approaches. 
 
Discussion  

 
The findings of this study demonstrate that 
the proposed Firefly-optimized Autoencoder 
framework delivers a significant advancement 
in crop recommendation by integrating 
nonlinear latent-space learning with 

intelligent feature optimization. Earlier 
studies in the literature have shown that 
machine learning models such as SVM, 
Random Forest, and XGBoost can achieve 
accuracies above 99% under controlled 
datasets; however, these models rely heavily 
on raw feature inputs and do not explicitly 
address redundancy, multicollinearity, or 
noisy attributes that frequently exist in agro-
environmental datasets. Deep learning 
architectures—including TCN, CNN–LSTM 
hybrids, and reinforcement learning–enabled 
models—have improved nonlinear pattern 
extraction but remain constrained by the 
absence of adaptive feature refinement 
mechanisms. In contrast, the present 
framework leverages an Autoencoder to 
generate compact latent representations that 
preserve essential crop-growing 
characteristics while suppressing noise. The 
Firefly Algorithm further refines these latent 
variables by maximizing variance and 
isolating the most discriminative dimensions, 
ultimately enhancing class separability. 
The experimentally observed performance 
gains validate the efficacy of this hybrid 
approach. The proposed model achieves 
99.32% accuracy, surpassing strong baselines 
such as TCN (99.09%), Deep-Q Elman 
networks (99.14%), and tuned Random 
Forest (99.05%). The exceptional ROC-AUC 
score of 0.9999 and PR-score of 0.9989 
confirm near-perfect discrimination across all 
22 crop classes. Visualization analyses—
including t-SNE of latent features, PR curves, 
and ROC curves—reveal distinct inter-class 
boundaries and minimal overlap, validating 
the improved quality of the latent space 
produced by the Autoencoder and optimized 
via the Firefly Algorithm. The model’s 
confusion matrix also highlights consistently 
strong per-class performance, with most 
crops achieving 20/20 correct predictions 
andonly a few classes exhibiting minor 
misclassification due to intrinsic similarities 
in soil–climatic signatures. These results 
collectively emphasize that integrating 
representation learning with swarm-
intelligence-driven feature optimization 
substantially improves the robustness and 
reliability of crop recommendation systems. 
Furthermore, the proposed pipeline 
demonstrates strong computational 
efficiency. Dimensionality reduction in the 
latent space lowers the burden on the 
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classifier and enhances generalization, as 
evidenced by smooth convergence curves and 
minimal overfitting. Unlike federated learning 
approaches or large CNN–LSTM architectures, 
the method maintains high accuracy with 
reduced model complexity, making it suitable 
for real-world agricultural advisory systems 
that operate under hardware constraints. 
Overall, the findings affirm that the hybrid 
Firefly-Autoencoder model effectively 
addresses the limitations observed in prior 
studies, providing a scalable, interpretable, 
and high-precision decision-support tool for 
intelligent agriculture. 
 

5. CONCLUSION AND FUTURE SCOPE 

The proposed Firefly-optimized Autoencoder 
model presents a significant advancement in 
intelligent crop recommendation by combining the 
strengths of deep representation learning and 
swarm-intelligence-based feature optimization. 
The Autoencoder effectively compresses soil and 
climatic attributes into a nonlinear latent space, 
retaining only the most informative structures 
while eliminating redundancy. The Firefly 
Algorithm further enhances the quality of this 
latent space by selecting the most discriminative 
dimensions through its brightness-attractiveness 
optimization mechanism. Extensive experiments 
confirm that the hybrid architecture achieves a 
remarkable accuracy of 99.32%, surpassing 
leading benchmark models including TCN, Deep-Q 
Elman networks, CNN–LSTM federated systems, 
and tuned Random Forest. The near-perfect ROC-
AUC (0.9999) and PR-score (0.9989) demonstrate 
excellent discriminative power across all 22 crop 
categories. The confusion matrix and t-SNE 
visualizations further validate that the optimized 
latent features produce well-separated decision 
boundaries, supporting highly reliable 
classification performance. Overall, the study 
establishes that integrating Autoencoder-based 
nonlinear learning with Firefly-driven feature 
selection yields a robust, scalable, and 
computationally efficient solution for precision 
agriculture. 
Despite its strong empirical performance, the 
current study is limited by the absence of real-time 
environmental variability and sensor-level noise, 
which are common in practical farming scenarios. 
Future work may extend the framework to 
incorporate geospatial data, temporal climate 
patterns, and multimodal inputs such as satellite 
imagery and IoT sensor streams. Integrating 
federated or edge-learning capabilities would 
further support privacy-preserving deployment in 
distributed agricultural environments. 
Additionally, developing an interpretable 

recommendation interface and validating the 
system across diverse agro-climatic zones would 
enhance its practical adoption. Advanced 
metaheuristics, attention-based architectures, or 
transformer-driven encoders may also be explored 
to further strengthen representation quality. 
Overall, the proposed approach provides a strong 
foundation for next-generation, data-driven smart 
farming systems capable of delivering 
personalized, high-accuracy crop 
recommendations. 
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