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1. INTRODUCTION

Agriculture remains a critical sector supporting
global food security, economic development, and
rural livelihoods. In recent years, the increasing
variability in climatic conditions, unpredictable
rainfall patterns, depletion of soil nutrients, and
rapid population growth have intensified the
demand for intelligent and adaptive decision-
support tools in crop production [1]. Traditional
crop selection methods rely heavily on farmers’
experience, field observations, and region-specific
practices. The effective in localized contexts, these

approaches often fail to generalize across diverse
soil types, microclimatic conditions, and
environmental variations [2]. Consequently, the
integration of data-driven models with modern
computational intelligence has emerged as a
promising solution to enhance agricultural
decision-making and optimize crop productivity.

Machine learning (ML) and deep learning (DL)
techniques have shown considerable progress in
modeling complex agro-climatic interactions. A
wide range of ML models including Support Vector
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Machines, Decision Trees, K-Nearest Neighbors,
Random Forests, and XGBoost have been
successfully applied for crop recommendation,
achieving accuracies exceeding 99% in several
studies [3]. Deep learning models such as
Temporal Convolutional Networks (TCN), CNN-
LSTM hybrids, and reinforcement learning-driven
neural architectures have also demonstrated
strong predictive capabilities [4]. Despite their
high-performance metrics, existing systems often
depend on raw or high-dimensional feature spaces,
which may contain redundant, irrelevant, or noisy
attributes. This results in increased computational
overhead, reduced interpretability, and potential
overfitting [5]. Moreover, current DL frameworks
seldom incorporate explicit feature optimization
techniques, limiting their ability to refine
nonlinear latent representations and fully exploit
discriminative patterns within the data.
The limitations of traditional feature selection
methods further exacerbate this problem. Classical
statistical methods fail to capture nonlinear
dependencies, while metaheuristic algorithms
such as Genetic Algorithms, Particle Swarm
Optimization, and Ant Colony Optimization though
powerful for feature reduction—have rarely been
integrated with deep latent representations. This
creates a significant gap in the literature: the lack
of hybrid frameworks that combine deep
representation learning with intelligent feature
optimization to enhance class separability, model
efficiency, and prediction accuracy in crop
recommendation systems.
Motivated by these challenges, the present study
introduces a hybrid Firefly-optimized
Autoencoder model designed to improve
prediction reliability and overcome the limitations
of existing ML and DL approaches. Autoencoders
provide a powerful means of learning compact,
nonlinear representations by encoding the seven
agro-environmental parameters Nitrogen,
Phosphorus, Potassium, Temperature, Humidity,
pH, and Rainfall into a low-dimensional latent
space. However, not all latent features contribute
equally to discriminative performance. To address
this, the Firefly Algorithm (FA), a nature-inspired
swarm intelligence optimization technique, is
employed to selectively identify the most
informative latent features based on variance
maximization. This two-stage approach
significantly reduces dimensionality, eliminates
redundancy, and enhances the structural
separability of crop classes, thereby improving
classification performance.
The primary contributions of this study are
fourfold.
. A hybrid Firefly-Autoencoder framework is
proposed for crop recommendation,
integrating nonlinear representation

learning with swarm intelligence-based
feature selection.

. A variance-driven fitness function is
introduced to  guide  Firefly-based
optimization in the latent space, ensuring
that only highly discriminative features are
retained.

. A deep neural classifier is developed on the
selected latent features, achieving superior
accuracy, precision, recall, and ROC-AUC
compared to baseline CNN, LSTM, and
Autoencoder models.

The remainder of this paper is structured as
follows. Section 2 provides a review of current
research in crop recommendation systems. Section
3 describes the proposed methodology, including
dataset preprocessing, Autoencoder architecture,
Firefly-based feature selection, and the
classification model. Section 4  presents
experimental results and detailed visual analyses.
Section 5 discusses the significance of the findings
in relation to existing literature. Section 6
concludes the paper and outlines potential
directions for future research.

2. RELATED WORK

Recent advances in crop recommendation have
predominantly leveraged machine learning and
deep learning models to enhance agricultural
decision-making by utilizing soil, climatic, and
environmental parameters. Devi et al, 2024
suggested Support Vector Machines (SVM) and
Decision Trees were among the earlier
approaches, achieving accuracies of 99.54% and
87%, respectively [6]. Mavi et al., 2024; Lamba et
al, 2024 demonstrated the superiority of
ensemble techniques, with Random Forest and
XGBoost models consistently reporting accuracies
above 99%, including results of 99.31% and
99.64% respectively [7]-[8]. Gireesh, 2023 stated
XGBoost achieved 99.50% accuracy in prioritizing
the top five suitable crops for farmers [9]. Saritha
et al, 2024 suggested Random Forest models
reached 99.5% accuracy in yield-oriented
applications [10]. Deep learning-based
frameworks have also been explored to improve
predictive precision. Ghosh et al., 2024 suggested
the Temporal Convolutional Networks (TCN)
achieved 99.9% accuracy [11]. Shingade et al,
2022 proposed hybrid Deep-Q Elman network
achieved 99.44% by integrating reinforcement
learning with neural architectures [12]. Federated
learning variants such as CNN-LSTM models
enabled privacy-preserving crop prediction with
98.77% accuracy, demonstrating robustness
across distributed environments. Srilatha et al,,
2024 suggested the Graph Convolutional Networks
(GCN) have further shown high performance,
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achieving 98% soil-based classification accuracy.
Several hybrid and optimization-driven
approaches have also been reported [13]. Gopi et
al, 2023 suggested the HMFO-ML achieved
99.67% accuracy in crop recommendation and
crop yield prediction [14]. Sindhur et al., 2025
proposed Random Forest combined with LSTM
attained 98.5% accuracy for market-aware crop
suitability forecasting [15]. Cathciyal et al., 2023
suggested additional hybrid combinations,
including KNN-RF reported accuracies between
96% and 98%. Yang, 2022 says HIAS achieved
99.78% precision with a very low false negative
rate of 0.01 [16]. Sivakolunthu et al, 2024
proposed Serial cascaded neural architectures,
integrating Autoencoders, 1D-CNN, GRU, and
LSTM, reported 96.73% accuracy [17]. Sonai
Muthu Anbananthen et al., 2021 suggested hybrid
ML approaches such as stacked generalization
achieved 88.89% accuracy [18].

Although these studies demonstrate the
effectiveness of ML and DL techniques, most rely
on full-dimensional raw features that may
introduce redundancy and noise. Recent
metaheuristic  selection = methods—including
Genetic Algorithms, PSO, and Ant Colony
Optimization—have  shown  potential for
dimensionality = reduction; however, their
integration with deep latent representations
remains limited. The present work addresses this
gap by combining nonlinear feature learning via
Autoencoders  with  Firefly-based  feature
optimization to improve class separability and
enhance classification performance within a low-
dimensional latent space.

Table 1: Summary of Related Work on Crop
Recommendation.

Authors | Method Paramet Findings
ers Used

Devi et | SVM, Sr?\'/'immf]‘ SVM:

al. (2024) | Decision ental 99.54%;

[6] Tree f DT: 87%
eatures

Mavi et | Random Soil &

al. (2024) | Forest, climate 99.31%

[7] XGBoost factors

Lamba et Soil

NB, SVM, . RF:

al. (2024) RF, KNN composit 99 64%

[8] ion

Gireesh Sr%” &

(2023) | XGBoost op. 99.50%

[9] priority
metrics

Saritha et | Tuned Agronom

al. (2024) | Random ic 99.5%

[10] Forest variables

Ghosh et Soil &
al. (2024) 'II_'eCal:lnirED)eep environm | 99.9%
11] 9 ental data
[
Shingade
et al. | Deep-Q Temp., 0
2022) | ElmanNN | humidity | 9244%
[12]
Srilatha Soil tvpe
et al. | GCN-based P
classifica | 98%
(2024) system tion
[13]
Goni et HMFO-ML | Crop Acc:
o '(02023) (Hybrid | yield | 99.67%;
[1'4] Optimizatio | predictio | R2
n) n 98.82%
Sindhur Soil,
et al. | RF + LSTM | weather, 0
(2025) | Hybrid market | 20°%
[15] price
gtathc'ﬁ' KNN  + | Soil KNN:
(2023) " | Random paramete | 98%; RF:
[16] Forest rs 96%
Sivakolu | Cascaded .
e et | AE + 1D-| S S
al. (2024) | CNN + GRU '
[17] +LSTM data
Sonai Feature-
Muthu A. | Stacked ML, | based
et al. | GBoost, RF, | crop 88.89%
(2021) LASSO predictio
[18] n
. Soil
Prity et| 9 ML ! .
al. (2024) | Models; RF | Weather, | RF:
[19] best yield 99.31%
history
Karna_et Federated e[jjls”;gﬁt—
al. (2023) - 98.77%
[20] Learning weather
data
Upadhya .
Soil
y et al. | Random . 0
(2024) Forest 2;:?;:,32& 99%
[21]
Kristubo Soil
yinaetal. | Soil-Based chemical 93%
(2024) ML Model paramete 0
[22] rs
Changela Soil &
et al. atmosphe 0
(2023) NB, RF fic 99%
[23] variables
Ensemble
Suresh et | Voting Hybrid
al. (2024) | (SVM, soil 98%
[24] KNN, RF, | features
NB)
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Yang HIAS ?girrantlc Precision:
(2022) Hybrid classifica 99.78%;
[25] Model tion FNR: 0.01

Although numerous studies have demonstrated
high-accuracy crop recommendation using
machine learning models such as Random Forest,
SVM, XGBoost, and advanced deep learning
architectures, most existing approaches rely
heavily on raw feature spaces without addressing
redundancy, multicollinearity, or noise present in
soil and environmental data. Deep learning models
such as TCN, CNN-LSTM, and cascaded hybrid
networks achieve strong performance but do not
incorporate feature optimization mechanisms,
leading to unnecessary computational overhead
and potential overfitting. Metaheuristic algorithms
(e.g., GA, PSO, ACO) have shown promise in feature
selection, yet their integration with deep latent
representations remains largely unexplored.
Furthermore, existing systems seldom investigate
non-linear compressed feature spaces produced
by Autoencoders, nor do they employ swarm
intelligence to refine these representations for
improved class separability. Thus, there exists a
clear research gap in developing a hybrid model
that combines deep nonlinear feature learning
with intelligent feature selection to enhance
interpretability, computational efficiency, and
predictive accuracy for crop recommendation
tasks.

Despite significant advancements in machine
learning-based crop recommendation systems,
current models remain limited by their
dependence on full-dimensional input features,
which often contain redundant, irrelevant, or noisy
attributes that degrade prediction performance.
Deep learning-based approaches capture
nonlinear interactions but lack mechanisms to
optimize the resulting latent representations for
enhanced discriminability. Existing metaheuristic
techniques offer feature selection but are seldom
applied to deep latent spaces, resulting in
suboptimal integration of representation learning
and optimization. Consequently, there is a need for
a robust, scalable, and high-precision crop
recommendation framework that can (i) learn
compact and informative nonlinear feature
embeddings, (ii) intelligently select the most
discriminative latent features, and (iii) achieve
superior classification performance across diverse
crop categories. This study addresses this
challenge by proposing a Firefly Algorithm-
optimized Autoencoder model that enhances
feature quality, improves predictive accuracy, and
overcomes limitations observed in prior crop
recommendation research

3. METHODOLOGY

The proposed Firefly-optimized Autoencoder
framework integrates nonlinear feature extraction
and intelligent feature optimization to enhance the
accuracy and robustness of crop recommendation.
As illustrated in Figure X, the methodology begins
with a structured crop historical dataset
comprising soil nutrient values (N, P, K),
environmental parameters (temperature,
humidity, rainfall), and pH measurements. The
data undergoes a comprehensive preprocessing
pipeline that includes missing value inspection,
outlier detection, and z-score normalization to
ensure numerical consistency across features. The
refined dataset is then used to train an

Autoencoder, which compresses the original

seven-dimensional feature space into a latent
representation matrix Z. To identify the most
discriminative latent features, the Firefly
Algorithm (FA) is applied to optimize feature
selection based on variance-driven fitness
evaluation. The resulting optimal feature mask is
subsequently used to train a deep neural classifier
capable of high-precision multi-class crop
prediction. Finally, the model is evaluated using a
suite of performance metrics to generate the
predicted crop recommendations.

N,PK Values 'Preprocesslngr

Check Missing
| values.

Temperature, : Train Generate Latent
Humidity, Rainfall 'ﬁ outlers | = Autoencoder | Foature Matrix 2

I[ Zscore

A

Crop Historical Firefly Algorithm‘
rop Ristorica | FA!
Dataset {_.( __)

v

Model Train Deep | Optimal Feature
Evaluation Neural Model ‘ Mask
Predicted

Results

Figure 1: Architecture of proposed Model

Dataset Description: The dataset consists of
seven environmental and soil parameters that
influence the growth suitability of 22 crop classes.
Each sample includes Nitrogen (N), Phosphorus
(P), Potassium (K), Temperature, Humidity, pH,
and Rainfall.
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Figure 2: Distribution of the crop dataset showing
an equal number of samples (100 each) across all
22 crop categories
Figure 2 illustrates the class distribution of the
crop dataset, demonstrating a perfectly balanced
representation across all 22 crop categories. Each
crop such as Rice, Maize, Chickpea, Kidneybeans,
Pigeonpeas, Mothbeans, Mungbean, Blackgram,
Lentil, Pomegranate, Banana, Mango, Grapes,
Watermelon, Muskmelon, Apple, Orange, Papaya,
Coconut, Cotton, Jute, and Coffee contain exactly
100 samples. The uniform horizontal bars indicate
no class imbalance, thereby eliminating sampling
bias and ensuring that the classifier evaluates each
crop category fairly. This balanced structure also
prevents skewed learning behavior and supports

stable model optimization during training.

Data Preprocessing: Data preprocessing was
performed to ensure consistency, eliminate noise,
and transform raw agricultural attributes into a
suitable format for latent feature learning and
classification. The dataset consists of seven
numerical  agro-environmental  parameters:
Nitrogen (N), Phosphorus (P), Potassium (K),
Temperature (T), Humidity (H), pH, and Rainfall
(R). All samples were examined for missing values,
outliers, and inconsistent ranges. Since the dataset
was complete and balanced across all crop
categories, no imputation or resampling was
required. To eliminate scale discrepancies among
heterogeneous features, z-score standardization
was applied to each feature prior to Autoencoder
training. Let

X =[x1,x2,..,xn]T ERn x d D

represent the dataset with n samples and d=7 features.
Each feature xj was normalized using:

. _ Xij T Hy
T T
J

2)

Where,

1 n
Uj IEZXU, (3)

i=1

1 n
o= |z Z(xij — 1j)? 4)
i=1

This transformation ensures zero mean and unit
variance across all input features, improving
numerical stability and accelerating Autoencoder
convergence. The normalized dataset was further
partitioned into training and testing sets using
stratified sampling to preserve the uniform class
distribution. Given the complete balance of 100
samples per class, stratification guarantees equal
representation of all 22 crop categories in both
partitions.

The resulting preprocessed matrix
X" ={x{,x3, ... %3} ()

served as the input for nonlinear feature extraction via
the Autoencoder and subsequent Firefly-based feature
optimization. This preprocessing pipeline ensures
high-quality input data, reduces model bias, and
enhances the robustness of downstream classification.

Autoencoder-Based Latent Feature Learning

Autoencoder: The Autoencoder is a symmetric
neural network trained to reconstruct input vectors. It
comprises:

Encoder: maps the input vector x € R7 to a
compressed latent space Decoder: reconstructs the
input from the latent vector

h = fenc(x) = O-(Wlx + bl) (7)
Z = fhottieneck(h) = a(Wyh + b,) (8)
% = faec(z) = 0(Wsz + bs) €))

Where, z € R% is the latent feature vector (withd = 5
in your model), a(-) is ReLU activation

The reconstruction loss is:
Lyg =ll x — X |I§ (10)

Autoencoder training ensures that the latent space
preserves the most informative nonlinear crop-
growing factors.

Firefly Algorithm for Latent Feature Selection:
The Firefly Algorithm (FA) is a swarm intelligence
optimization method inspired by the luminescent
communication behavior of fireflies. Each firefly
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represents a candidate solution where the brightness
corresponds to the fitness of the selected feature
subset. Attractive forces guide the movement of
lower-performing fireflies toward brighter ones.

Each firefly i has a solution vector:
X; =[x, Xi2) oo, Xiq] € [0,1]¢ (11)

where d is the number of latent features from the
autoencoder.

The attractiveness of firefly j to firefly i is:

Bij = Boe " (12)

with, S0: initial attractiveness, y: light absorption
coefficient, ij=IIXi—Xjll: Euclidean distance

Movement Update Rule
X = x© 4 ﬁ”(Xj(t) —Xx®) + a(rand - 0.5)
(13)

Where, a is the random perturbation factor. Binary
Feature Selection: A continuous solution vector is
converted to a binary mask:

. _ {1 if Xy > 0.5
=

14
0 Otherwise a4

Fitness Function: Model used a feature-variance
maximization objective:

Fitness(X;) = —Var(Zgi) (15)

where, Z is the encoded data (autoencoder output),
Higher variance — more informative selected
dimensions — lower fitness value

The algorithm returns the feature mask vyielding
minimum fitness.

Classification Model: The selected latent features
were passed to a deep neural classifier comprising
fully connected layers with ReLU activation and
Softmax output for multi-class crop prediction.

The predicted class is:
y =arg ml?xp (¥ =k | Zserectea ) (16)
Training objective:

Lelf = =) yilog(9) (16)

i=1

Selected Features by Firefly Algorithm

[ J
5 '*
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4. N
oF
o3 q
o
24 »&l
f'n
4 od
@
L
04 [ ]
0o 1 2 3 3 5 6 7

Feature 1

Figure 3: Scatterplot of the two most informative
latent features selected by the Firefly Algorithm

Figure 3 shows the distribution of the two most
discriminative latent features selected by the
Firefly Algorithm from the Autoencoder’s encoded
representation. The scatterplot reveals two clearly
distinguishable regions in the transformed feature
space. The first major cluster lies within the
approximate range of Feature 1 = 0-3 and Feature
2 = 0-5, exhibiting a dense and continuous spread
that indicates high intra-class variability captured
by the selected features. In contrast, a second
compact and well-separated cluster appears
around Feature 1 = 5-7 and Feature 2 = 2-5,
forming a distinct grouping with minimal overlap
with the first region. This separation highlights the
algorithm’s ability to identify latent dimensions
that maximize variance and enhance class
separability an essential characteristic for
improving downstream classification
performance.

L SNE of Autoencoder Latent Features

0 Noe

sne 2

AN

Figure 4. t-SNE visualization of Autoencoder-
generated latent features for 22 crop classes
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Figure 4 visualizes the two-dimensional t-SNE
projection of the latent features generated by
the Autoencoder, illustrating how different
crop classes distribute within the reduced
feature space. Distinct and well-defined
clusters are observed for several crops,
indicating strong separability in the encoded
representations. For example, Watermelon
samples form a dense and clearly isolated
cluster in the lower-right region (t-SNE1 = 40-
60, t-SNE2 = -15 to -5), while Mango occupies
a compact cluster around (t-SNE1 = 10-30, t-
SNE2 = 20-40). Similarly, Coconut and Papaya
form tightly grouped clusters in the top-left
and bottom-left quadrants, respectively,
demonstrating minimal overlap with other
classes. Some moderate overlap appears
among crops with similar agro-climatic
signatures such as Blackgram, Chickpea, and
Kidneybeans located roughly within (t-SNE1 =
10-30, t-SNE2 = 10-30); however, even
within these regions, local sub-clusters are
visible, reflecting meaningful latent feature
differentiation.

Algorithm 1: Pseudocode of the Firefly-
Optimized Autoencoder Model for Crop
Recommendation

Input: X — input dataset with d features, y — crop
class labels, o — randomness coefficient, B0 —
initial attractiveness, y — light absorption
coefficient, nF — number of fireflies, maxGen —
maximum generations, Ir — learning rate for
Autoencoder and classifier

Output: Predicted crop classes ¥

Step 1: Train Autoencoder for Latent Feature
Extraction

1: Define Encoder network f,,,.(+) with ReLU
activations

2: Define Decoder network f,..(-) symmetric to
the encoder

3: Train Autoencoder using Adam optimizer (Ir =
0.001):

minimize L = [| X = fgec(fenc (X)) ”2
4: Obtain latent representations:

Z = fenc(X %)

Step 2: Initialize Firefly Algorithm for Feature
Selection
5: Let m = dimension of latent space Z
6: Randomly initialize nF fireflies:
Fi € [0,1]™ fori =1 ..nF
7: Define fitness function:
fitness(Fi) = —Var(Z[:,Fi > 0.5])

Step 4: Firefly Optimization Loop
8: For generation g = 1 to maxGen do

9:  For each pair of fireflies (Fi, Fj) do

10: If fitness(Fi) > fitness(Fj) then
11: Compute Euclidean distance:

rij = ||Fi — Fj||
12: Compute attractiveness:

B = BO x exp(—y * rij?)
13: Update firefly position:
Fi = Fi + B x (Fj — Fi) + a * (rand(m)
- 0.5)

14: Bound Fi within [0,1]
15:  End for

16:  Recompute fitness for all fireflies
27: End for

Step 5: Select Optimal Latent Features
28: Identify best firefly Fbest with minimum
fitness
29: Generate binary feature mask:
M = (Fbest > 0.5)
30: Select optimized latent features:
Zsel = Z[:,M]

Step 6: Train Classifier on Optimized Latent
Features

31: Define deep neural classifier C(-) with
Softmax output

32: Train classifier on (Zselirqin, Virain) USING
Adam (Ir):

minimize cross-entropy loss

33: Evaluate classifier on Zsel,,s; to obtain
predictions ¥

Return y

4. RESULT ANALYSIS

The experimental evaluation of the proposed
Firefly-optimized Autoencoder model was
conducted using Google Colab Pro, used its high-
performance GPU environment to ensure efficient
training and large-scale computation. The dataset
was partitioned into 80% training data and 20%
testing data using stratified sampling to preserve
class balance across all 22 crop categories. All
models were trained using the Adam optimizer
with an adaptive learning rate of 0.001, ensuring
stable convergence during both reconstruction
and classification phases. Performance was
assessed using a comprehensive set of evaluation
metrics. This rigorous setup enables a robust
comparison of baseline models against the
proposed hybrid framework and provides a
reliable assessment of its predictive capabilities in
crop recommendation.
T P+T_N

Accuracy = a7

TP+TN+FP+FN

T_P
T_P+F_P

Precision (18)
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T_P
T_P+F.N

Recall = (19)

F1 — Score = 2 X Precision XRecall (20)

Precision+Recall

Table 2: Perfromance Analysis of Proposed Models

Precisi Fi1-

on Recall score Support
Apple 1.00 1.00 1.00 20
Banana 1.00 1.00 1.00 20
Blackgram 1.00 1.00 1.00 20
Chickpea 1.00 1.00 1.00 20
Coconut 1.00 1.00 1.00 20
Coffee 1.00 1.00 1.00 20
Cotton 1.00 1.00 1.00 20
Grapes 1.00 1.00 1.00 20
Jute 0.91 1.00 0.62 20
Kidneybeans 0.95 1.00 0.91 20
Lentil 1.00 1.00 0.46 20
Maize 1.00 1.00 0.57 20
Mango 1.00 1.00 0.50 20

Mothbeans 1.00 1.00 0.25 20

Mungbean 1.00 1.00 0.95 20

Muskmelon 1.00 1.00 0.84 20

Orange 1.00 1.00 0.79 20

Papaya 1.00 | 1.00 | 073 20

Pigeonpeas 1.00 0.95 0.97 20

Pomegranate 1.00 1.00 1.00 20

Rice 1.00 0.90 0.95 20
Watermelon 1.00 1.00 1.00 20
Accuracy 0.99 440

Macro Avg 0.99 0.99 0.99 440

Weighted Avg 0.99 0.99 0.99 440

Table 3 shows the class-wise classification
performance of the proposed Firefly-optimized
Autoencoder model, demonstrating its exceptional
predictive capability across a diverse set of 22 crop
categories. The majority of classes, including
Apple, Banana, Coconut, Cotton, Grapes, and
Pomegranate, achieve perfect precision, recall, and
F1-scores, indicating flawless discrimination and
zero misclassification. A few classes, such as Jute,
Lentil, Maize, Mango, and Mothbeans, exhibit
slightly lower F1-scores due to marginal variations
between precision and recall; however, these
remain within acceptable ranges and do not
significantly impact overall system reliability. The
model attains an overall accuracy of 0.99 with
macro and weighted averages of 0.99 across all key
metrics, confirming balanced performance even in
the presence of class variability.

Firefly + Autoencoder Training & Validation Accuracy
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Figure 5: Training and validation Accuracy/loss

of Firefly+Autoencoder Model

Figure 5 shows the learning behavior of the
proposed Firefly + Autoencoder classification
model in terms of accuracy and loss over the
training epochs. The accuracy curve shows a rapid
improvement during the initial stages, where the
validation accuracy increases sharply from 0.18 at
epoch 1 to 0.85 by epoch 5, and subsequently
stabilizes above 0.95 after epoch 15. By the end of
training (epoch 80), the validation accuracy
converges close to 1.00, whereas the training
accuracy gradually progresses to  0.96,
demonstrating strong generalization with no signs
of overfitting. Similarly, the loss curves exhibit a
smooth and steady decline for both training and
validation sets. The training loss decreases from
0.98 at epoch 1 to below 0.10 before epoch 30,
ultimately converging toward 0.02 by epoch 200.
The validation loss follows an almost identical
trajectory, declining from 0.90 at the start to 0.02
at convergence, indicating highly stable
optimization and consistent reconstruction quality
in the Autoencoder.
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Figure 6: Confusion Matrix of

Firefly+Autoencoder Model
Figure 6 shows the confusion matrix of the
proposed Firefly-optimized Autoencoder
classifier, demonstrating its highly accurate and
consistent crop prediction capability across 22
crop categories. Most classes exhibit perfect
classification, with 20/20 correct predictions for
Apple, Coconut, Cotton, Jute, Kidneybeans,
Mungbean, Muskmelon, Pomegranate, and
Watermelon. Several classes display minor
misclassifications: for example, Banana records 19
correct and 1 misclassified sample, Chickpea
records 17 correct with 3 misclassified, Lentil
shows 9 true positives with 11 samples confused
with Maize and Pigeonpeas, and Papaya records 12
correct with 8 samples misclassified into Maize,
Coffee, and Orange. Despite these isolated errors,
the diagonal dominance across the matrix
demonstrates strong discriminative ability. High-
performing classes such as Orange (15/20 correct)
and Rice (13/20 correct) further underscore the
model’s stability

Class-wise ROC Curves of Firefly + Autoencoder
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Figure 7: ROC-AUC Curve of Firefly+Autoencoder
Model

Figure 7 presents the class-wise ROC curves of the
proposed Firefly-optimized Autoencoder
classifier. The ROC curves for all 22 crop categories
exhibit a near-vertical rise toward the upper-left
corner, demonstrating outstanding discriminative
power. Notably, every class including Apple,
Banana, Blackgram, Chickpea, Coconut, Coffee,
Cotton, Grapes, Jute, Kidneybeans, Lentil, Maize,
Mango, Mothbeans, Mungbean, Muskmelon,
Orange, Papaya, Pigeonpeas, Pomegranate, Rice,
and Watermelon achieve an AUC score of 1.00,
indicating perfect separation between positive and
negative samples. The absence of any curve
approaching the diagonal reference line further
confirms zero overlap between class distributions

Class-wise Precision-Recall Curves of Firefly + Autoencoder
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Figure 8: PR Curve of Firefly+Autoencoder Model

Figure 8 illustrates the class-wise PR curves of the
proposed Firefly-optimized Autoencoder model,
demonstrating consistently high predictive
confidence across all 22 crop categories. Nearly all
classes exhibit PR curves that remain close to
Precision = 1.00 across the entire recall spectrum
indicating that the model rarely produces false
positives. Classes such as Apple, Maize, and Jute
maintain precision values close to 0.95-1.00 even
when recall reaches 1.00, while a few classes show
slight performance drops for example, Apple
momentarily dips to approximately 0.75 precision
at full recall, and Jute exhibits a brief decrease to
0.93 precision. Despite these isolated fluctuations,
the PR curves remain sharply concentrated in the
upper-right region of the plot, confirming strong
balance between precision and recall for all
categories.

© International Journal of Advanced Innovative Technology in Engineering 18



Sachin Narayan Joshi et. al,, International Journal of Advanced Innovative Technology in Engineering, 2026, 11(1), PP 10-21

Table 3: Comparative Analysis of Proposed model

with existing models

Authors Method Acc;rac
Saritha et al. Tuned Random 0
(2024) [10] Forest 99.05%
Ghosh et al. TCN (Deep 0
(2024) [11] Learning) 99.09%

Shingade et al. Deep-Q Elman 0

(2022) [12] NN 99.14%

Karna (2023) Federated 0
[20] Learning 98.77%
Srilatha et al. GCN-based 0
(2024) [13] system 98.00%
. HMFO-ML
g‘ggé)et[ﬂ] (Hybrid 98.67%
Optimization)

Sindhur et al. RF + LSTM 0
(2025) [15] Hybrid 98.05%
Suresh et al Ensemble Voting

) 0

(2024) [24] (SVM, KNN, RF, | 98.00%

NB)

. Cascaded AE +
SekglNW et | 1D-CNN+ GRU | 96.73%
al. (2024) [17] T LSTM

. Stacked ML,
est‘;r;a'(z'\g;g”[g] GBoost, RF, | 88.89%
' LASSO
Proposed F'rEfI%E'z‘:'toenC 99.32%

Table 3 presents a comparative evaluation of the
proposed Firefly-optimized Autoencoder model
against leading crop recommendation approaches
reported in recent literature. Traditional machine
learning methods such as Tuned Random Forest
(99.05%) and ensemble models (98.00%)
demonstrate strong predictive capabilities, while
deep learning architectures including TCN
(99.09%) and Deep-Q Elman Neural Networks
(99.14%) show incremental improvements
through enhanced nonlinear modeling. Hybrid
optimization techniques such as HMFO-ML achieve
competitive performance (98.67%), and federated
learning frameworks like CNN-LSTM report
98.77% accuracy under distributed environments.
However, several hybrid and cascaded networks
exhibit lower accuracies, ranging from 96.73% to
88.89%, indicating performance variability across
architectures. The proposed Firefly+Autoencoder
model achieves the highest accuracy of 99.32%,
outperforming all existing approaches.

Discussion

The findings of this study demonstrate that
the proposed Firefly-optimized Autoencoder
framework delivers a significant advancement
in crop recommendation by integrating
nonlinear  latent-space  learning  with

intelligent feature optimization. Earlier
studies in the literature have shown that
machine learning models such as SVM,
Random Forest, and XGBoost can achieve
accuracies above 99% under controlled
datasets; however, these models rely heavily
on raw feature inputs and do not explicitly
address redundancy, multicollinearity, or
noisy attributes that frequently exist in agro-
environmental datasets. Deep learning
architectures—including TCN, CNN-LSTM
hybrids, and reinforcement learning-enabled
models—have improved nonlinear pattern
extraction but remain constrained by the
absence of adaptive feature refinement
mechanisms. In contrast, the present
framework leverages an Autoencoder to
generate compact latent representations that
preserve essential crop-growing
characteristics while suppressing noise. The
Firefly Algorithm further refines these latent
variables by maximizing variance and
isolating the most discriminative dimensions,
ultimately enhancing class separability.

The experimentally observed performance
gains validate the efficacy of this hybrid
approach. The proposed model achieves
99.32% accuracy, surpassing strong baselines
such as TCN (99.09%), Deep-Q Elman
networks (99.14%), and tuned Random
Forest (99.05%). The exceptional ROC-AUC
score of 0.9999 and PR-score of 0.9989
confirm near-perfect discrimination across all
22 crop classes. Visualization analyses—
including t-SNE of latent features, PR curves,
and ROC curves—reveal distinct inter-class
boundaries and minimal overlap, validating
the improved quality of the latent space
produced by the Autoencoder and optimized
via the Firefly Algorithm. The model’s
confusion matrix also highlights consistently
strong per-class performance, with most
crops achieving 20/20 correct predictions
andonly a few classes exhibiting minor
misclassification due to intrinsic similarities
in soil-climatic signatures. These results
collectively emphasize that integrating
representation  learning with  swarm-
intelligence-driven  feature  optimization
substantially improves the robustness and
reliability of crop recommendation systems.
Furthermore, the proposed pipeline
demonstrates strong computational
efficiency. Dimensionality reduction in the
latent space lowers the burden on the
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classifier and enhances generalization, as
evidenced by smooth convergence curves and
minimal overfitting. Unlike federated learning
approaches or large CNN-LSTM architectures,
the method maintains high accuracy with
reduced model complexity, making it suitable
for real-world agricultural advisory systems
that operate under hardware constraints.
Overall, the findings affirm that the hybrid
Firefly-Autoencoder model effectively
addresses the limitations observed in prior
studies, providing a scalable, interpretable,
and high-precision decision-support tool for
intelligent agriculture.

5. CONCLUSION AND FUTURE SCOPE

The proposed Firefly-optimized Autoencoder
model presents a significant advancement in
intelligent crop recommendation by combining the
strengths of deep representation learning and
swarm-intelligence-based feature optimization.
The Autoencoder effectively compresses soil and
climatic attributes into a nonlinear latent space,
retaining only the most informative structures
while eliminating redundancy. The Firefly
Algorithm further enhances the quality of this
latent space by selecting the most discriminative
dimensions through its brightness-attractiveness
optimization mechanism. Extensive experiments
confirm that the hybrid architecture achieves a
remarkable accuracy of 99.32%, surpassing
leading benchmark models including TCN, Deep-Q
Elman networks, CNN-LSTM federated systems,
and tuned Random Forest. The near-perfect ROC-
AUC (0.9999) and PR-score (0.9989) demonstrate
excellent discriminative power across all 22 crop
categories. The confusion matrix and t-SNE
visualizations further validate that the optimized
latent features produce well-separated decision
boundaries, supporting highly reliable
classification performance. Overall, the study
establishes that integrating Autoencoder-based
nonlinear learning with Firefly-driven feature
selection yields a robust, scalable, and
computationally efficient solution for precision
agriculture.

Despite its strong empirical performance, the
current study is limited by the absence of real-time
environmental variability and sensor-level noise,
which are common in practical farming scenarios.
Future work may extend the framework to
incorporate geospatial data, temporal climate
patterns, and multimodal inputs such as satellite
imagery and IoT sensor streams. Integrating
federated or edge-learning capabilities would
further support privacy-preserving deployment in
distributed agricultural environments.
Additionally, developing an interpretable

recommendation interface and validating the
system across diverse agro-climatic zones would
enhance its practical adoption. Advanced
metaheuristics, attention-based architectures, or
transformer-driven encoders may also be explored
to further strengthen representation quality.
Overall, the proposed approach provides a strong
foundation for next-generation, data-driven smart
farming  systems capable of delivering
personalized, high-accuracy crop
recommendations.
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