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1. INTRODUCTION 

The skin, the body’s largest organ, serves as the 
first line of defense against environmental threats. 
However, it is vulnerable to a wide range of 
conditions triggered by bacterial and fungal 
infections, viral agents, and allergic reactions [1]. 
Among these, skin lesions are among the most 
frequently encountered issues globally. While 
lesions often appear as abnormal changes in skin 
texture or color, accurate diagnosis remains 
challenging due to symptom overlap across 
different types of skin conditions. For example, 
both contact dermatitis and eczema exhibit similar 
visual symptoms such as redness, swelling, and 

cracked skin, measles and keratosis may both 
present with sporadically scattered red spots, 
complicating visual differentiation. These visual 
similarities can lead to misdiagnoses, especially by 
dermatologists with limited clinical experience. 

Timely and accurate diagnosis of skin lesions 
is critical, as early detection often leads to better 
treatment outcomes and increased recovery rates. 
Nevertheless, training a skilled dermatologist is a 
long and costly process. In 2024, the average cost 
of medical education in the United States reached 
approximately USD 358,192, with tuition fees 
increasing annually since 2016 [2]. The need for an 
efficient, automated diagnostic system is thus 
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more pressing, particularly in low-resource 
regions that often face shortages in medical 
infrastructure and trained professionals. 

Over the past decade, artificial intelligence 
(AI) has made remarkable advancements in image 
analysis, driven by the integration of machine 
learning (ML) and deep learning (DL) techniques. 
These technologies enable the development of 
robust models for segmentation and classification 
of medical images. While traditional ML 
approaches rely on manual feature extraction and 
simpler architectures, DL models autonomously 
learn hierarchical and discriminative features 
from raw image data [4]. This capability has 
sparked considerable interest in applying AI for 
medical diagnostics, especially in dermatology. In 
fact, DL-based systems have already achieved 
diagnostic performance comparable to 
dermatologists with up to five years of experience 
[5], positioning DL as a promising and cost-
effective solution for skin disease detection. 

The success of AI in healthcare applications 
depends heavily on access to large, well-annotated 
datasets to ensure both reliability and 
generalization. To accelerate progress in this field, 
collaborative efforts have led to the creation of 
benchmark datasets such as the International Skin 
Imaging Collaboration (ISIC), which hosted annual 
challenges from 2016 to 2020 to drive innovation 
in skin disease diagnosis [6]. A major focus of this 
research is melanoma detection—a critical task, 
given its high mortality rate. According to the 
World Health Organization (WHO), melanoma 
cases are projected to reach 466,914 by 2040, with 
an estimated 105,904 related deaths [7]. 

In recent years, numerous publicly available 
datasets containing macroscopic and dermoscopic 
images have become accessible online, playing a 
crucial role in advancing skin disease detection 
research. Notable examples include the PH2 
dataset [8], the HAM10000 (Human Against 
Machine with 10,000 training images) dataset [9], 
the BCN 20000 dataset [10], the EDRA Interactive 
Atlas of Dermoscopy dataset [11], and the Med-
Node dataset [12]. Depending on the specific 
research objectives, these datasets can be used 
independently, in part, or in combination. 
Macroscopic images—often captured using 
conventional digital or smartphone cameras—
depict external views of skin lesions, while 
dermoscopic images, obtained through 
standardized clinical procedures, reveal 
subsurface skin structures with fewer artifacts and 
enhanced detail. Dermoscopic imaging, by 
exposing features not visible to the naked eye, 
typically provides more reliable input for 
segmentation and classification tasks compared to 
macroscopic imaging [13], despite potential 
variations in lighting, resolution, or image capture 
distance. 

To ensure a comprehensive and systematic 
overview of the current progress in skin lesion 
detection, we employed a targeted literature 
search strategy using PubMed, a widely respected 
repository for biomedical and life sciences 
research. Our review emphasizes studies 
published from 2023 onward that explore machine 
learning-based solutions for skin lesion 
classification and diagnosis. In conducting this 
review, we also utilized high-quality datasets 
curated by medical and academic institutions. 
These resources have not only facilitated the 
development and evaluation of diagnostic 
algorithms but also contributed to public 
awareness about the significance of early detection 
and skin health education. Through the analysis of 
these datasets and the associated research studies, 
we aim to present the current landscape of AI-
driven dermatological diagnostics while 
identifying research gaps and opportunities for 
future innovation. 
 

2. MACHINE LEARNING TECHNIQUES FOR SKIN 

DISEASE DETECTION 
ML techniques have played a foundational role in 
the development of automated systems for skin 
disease detection and classification. Traditional 
ML models rely on handcrafted features extracted 
from skin images and use these features to train 
classifiers capable of distinguishing between 
various skin conditions [14]. This section outlines 
the core components of traditional ML approaches, 
including common classifiers, feature extraction 
strategies, and preprocessing methods, followed 
by a discussion on their benefits and limitations. 
 
A. Traditional Machine Learning Models 

Several classical ML algorithms have been 
widely applied in dermatological image analysis: 
 
Support Vector Machine (SVM): SVMs are 
effective for high-dimensional feature spaces and 
are particularly useful in binary classification 
tasks. Their use in skin disease detection includes 
separating benign from malignant lesions based on 
extracted features. 
K-Nearest Neighbors (KNN): A non-parametric 
algorithm that classifies a sample based on the 
majority vote of its ‘k’ nearest neighbors. Though 
simple to implement, KNN can be computationally 
intensive for large datasets. 
Random Forest (RF): An ensemble learning 
method that constructs multiple decision trees and 
combines their predictions. It is robust to 
overfitting and can handle imbalanced datasets 
effectively. 
Naïve Bayes (NB): A probabilistic classifier based 
on Bayes’ theorem, assuming independence 
between features. It performs well with smaller 
datasets and is computationally efficient.
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B. Feature Extraction Techniques 
Traditional ML relies heavily on the 

manual extraction of discriminative features from 
input images. Common feature types include: 
 
Color Features: Histograms, color moments, and 
color constancy models help capture lesion 
pigmentation, which is often a strong indicator of 
disease type. 
Texture Features: Techniques such as Local 
Binary Patterns (LBP), Gabor filters, and Gray 
Level Co-occurrence Matrix (GLCM) extract 
texture patterns that help in differentiating skin 
abnormalities. 
Shape Features: Contour-based descriptors, area, 
perimeter, symmetry, and border irregularity are 
extracted to assess lesion morphology, which is 
crucial for melanoma identification. 
 
C. Preprocessing and Segmentation Techniques 

Preprocessing enhances image quality 
and removes artifacts like hair, shadows, and 
background noise. Common preprocessing steps 
include: 
 
Image Normalization: Standardizes pixel values 
to ensure consistency in brightness and contrast. 
Hair Removal: Algorithms like DullRazor are used 
to eliminate hair artifacts that may interfere with 
feature extraction. 
Noise Reduction: Median and Gaussian filters are 
employed to smooth images and suppress 
unwanted noise. 
 
Segmentation techniques are used to isolate the 
lesion from surrounding healthy skin. Popular 
segmentation approaches include: 
 
Thresholding: Separates lesion and background 
using pixel intensity thresholds. 
Edge Detection: Detects boundaries using 
operators like Sobel or Canny. 
Region-Based Methods: Includes region growing 
and watershed algorithms that group pixels with 
similar characteristics. 
 
D. Advantages and Limitations of Classical ML 
Approaches 
 
Advantages: 

• Require less computational power 
compared to deep learning models. 

• Easier to interpret and debug. 
• Work effectively with smaller datasets. 
• Faster training times and lower resource 

requirements. 
 
Limitations: 

• Performance heavily depends on the 
quality of manually extracted features. 

• Limited ability to generalize to complex 
and high-dimensional image data. 

• Poor scalability for large datasets or multi-
class classification tasks. 

• Feature engineering requires domain 
expertise and can be time-consuming. 

3. DEEP LEARNING APPROACHES FOR SKIN 

DISEASE DETECTION 
DL has revolutionized image-based medical 
diagnostics by enabling end-to-end learning 
systems that automatically extract complex, 
hierarchical features from raw input images. 
Convolutional Neural Networks (CNNs), in 
particular, have demonstrated remarkable success 
in various skin disease detection tasks, including 
classification, segmentation, and lesion 
localization [15]. This section outlines the core DL 
architectures, advanced techniques, and recent 
innovations applied in dermatological image 
analysis. 
A. CNN-Based Architectures 

CNNs have become the backbone of skin 
image classification and segmentation due to their 
ability to learn spatial hierarchies of features. 
 
VGGNet: Known for its simplicity and depth, VGG 
uses small convolutional filters (3×3) and uniform 
architecture. Despite its high accuracy, it is 
computationally expensive due to a large number 
of parameters. 
ResNet (Residual Network): ResNet addresses 
the vanishing gradient problem in deep networks 
by introducing residual connections. Its deeper 
layers allow for improved feature learning and are 
commonly used in medical image classification. 
Inception Network: This model employs parallel 
convolutions of different sizes in a single layer, 
allowing for multi-scale feature extraction. 
Inception’s modular design reduces computational 
cost while preserving accuracy. 
DenseNet: Dense Convolutional Networks connect 
each layer to every other layer, enhancing feature 
reuse and reducing the number of parameters. 
This dense connectivity makes DenseNet highly 
effective for subtle pattern recognition in 
dermoscopic images. 
 
B. Transfer Learning and Fine-Tuning 

Transfer learning has become a popular 
strategy in medical imaging where annotated data 
is limited. In this approach, models pre-trained on 
large-scale datasets like ImageNet are fine-tuned 
on domain-specific data such as dermoscopic 
images [16]. This significantly reduces training 
time and improves generalization. 

Fine-tuning allows model weights to 
adapt to the target task by updating selected 
layers, typically the final classification layers, while 
earlier layers retain the learned low-level features 
from pretraining.



Budhamala Ankush Gedam et. al., International Journal of Advanced Innovative Technology in Engineering, 2025, 10(3), PP 7-13 

 
 
© International Journal of Advanced Innovative Technology in Engineering  10 

C. Attention Mechanisms and U-Net for 
Segmentation 
 
Attention Mechanisms: Attention modules 
enhance model performance by enabling it to focus 
on the most relevant parts of the image, such as 
lesion regions [17]. They have been incorporated 
into CNNs to improve lesion localization and 
classification accuracy. 
 
U-Net: U-Net is a widely used encoder-decoder 
architecture for biomedical image segmentation. It 
uses skip connections to combine semantic and 
spatial information from different layers, making it 
highly effective in delineating lesion boundaries 
with precision [18]. 

Advanced variations like Attention U-Net, 
UNet++ and DeepLab have further improved 
segmentation accuracy in skin lesion tasks. 
 
D. Ensemble Learning in Deep Learning 

Ensemble learning combines predictions 
from multiple models to improve robustness and 
performance. In deep learning, this can involve: 

• Averaging or voting across different CNN 
architectures. 

• Combining different model checkpoints. 
• Using stacking or boosting techniques. 

 
Ensemble methods help mitigate model bias and 
variance, resulting in more reliable predictions in 
clinical scenarios. For instance, combining ResNet 
and DenseNet has shown improved diagnostic 
accuracy for melanoma detection. 
 
E. Recent Advances: Vision Transformers and Hybrid 
Models 
 
Vision Transformers (ViTs): Unlike CNNs, ViTs 
treat images as sequences of patches and apply 
self-attention mechanisms to model global 
relationships. Recent studies show that ViTs 
achieve competitive or superior performance 
compared to CNNs, especially when trained on 
large datasets. 
Hybrid CNN-Transformer Models: These models 
combine the local feature extraction capabilities of 
CNNs with the global context awareness of 
Transformers. This hybrid design has shown 
promise in improving classification accuracy for 
complex dermatological cases. 
Self-Supervised and Semi-Supervised 
Learning: These techniques are gaining traction 
for utilizing unlabeled data more effectively, which 
is particularly useful in medical domains where 
labeled data is scarce. 
 
Deep learning continues to push the boundaries of 
automated skin disease diagnosis, offering high 
accuracy and clinical relevance. The integration of 
advanced architectures, transfer learning, 

attention mechanisms, and ensemble strategies 
ensures that DL models are well-equipped to 
handle the variability and complexity of 
dermatological conditions. 
 

4. COMPARATIVE ANALYSIS 

The performance of skin disease detection models 
has significantly improved with the transition from 
traditional ML methods to DL techniques. This 
section provides a comparative analysis of both 
approaches, evaluates them using standard 
performance metrics, and discusses their 
strengths and limitations in real-world 
applications. 
 

A. Performance Comparison: ML vs. DL 
Traditional ML algorithms such as SVM, KNN, 

RF, and NB rely heavily on handcrafted features 
extracted using domain knowledge. These features 
often include color histograms, texture 
descriptors, and shape-based metrics. 

In contrast, DL models like CNNs (ResNet, 
DenseNet, VGG) automatically learn hierarchical 
and abstract representations from raw images, 
making them more adept at capturing complex 
patterns and variations in dermatological images 
[19]. 

 
Table 1: Comparative Analysis of Existing Methods 

Approach Accuracy Precision Recall 
F1-

Score 
AUC-
ROC 

SVM (with 
handcrafted 

features) 
80–85% 78–83% 

77–
85% 

77–
84% 

0.82–
0.86 

Random Forest 82–86% 80–85% 
79–
87% 

79–
86% 

0.83–
0.87 

CNN (e.g., VGG, 
ResNet) 

88–94% 86–92% 
85–
93% 

86–
93% 

0.92–
0.96 

Ensemble CNN 
Models 

91–96% 90–95% 
89–
96% 

90–
95% 

0.94–
0.98 

Vision 
Transformers 

92–97% 91–96% 
90–
96% 

91–
96% 

0.95–
0.99 

 
Table 1 shows the results highlight that DL 
approaches consistently outperform traditional 
ML models, particularly in terms of sensitivity 
(recall) and AUC-ROC—crucial metrics for medical 
diagnostics where false negatives can be life-
threatening. 

B. Evaluation Metrics Used 
To assess the performance of models across 

various datasets and tasks, the following standard 
metrics are commonly used: 
Accuracy: Proportion of correctly classified 
samples. 
Precision: Proportion of true positive predictions 
among all positive predictions. 
Recall (Sensitivity): Proportion of actual 
positives correctly identified. 
F1-Score: Harmonic mean of precision and recall, 
providing a balance between the two.
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AUC-ROC (Area Under the Receiver Operating 
Characteristic Curve): Measures the model's 
ability to discriminate between classes, 
particularly useful in imbalanced datasets. 
 

Table 2: Strength and Limitation of Existing 
Methods 

Method Strengths Limitations 

Traditional 
ML 

- Simpler and faster to train- 
Works well with small 
datasets- Easier to interpret 

- Requires 
extensive 
feature 
engineering- 
Limited 
generalization 
for complex 
patterns- Lower 
accuracy on 
high-variance 
images 

Deep 
Learning 

- Automatically extracts 
features- High accuracy on 
complex and diverse 
datasets- Scalable and 
adaptable with transfer 
learning 

- Requires large 
annotated 
datasets- 
Computationally 
intensive- Less 
interpretable 
(“black-box” 
nature) 

Ensemble DL 
Models 

- Improved robustness and 
accuracy- Reduces 
bias/variance 

- Higher 
computational 
cost- Complex to 
implement and 
tune 

Vision 
Transformers 

- Captures long-range 
dependencies- Promising 
for 
segmentation/classification 
tasks 

- Requires large-
scale 
pretraining- Still 
emerging in 
clinical 
deployment 

 
5. CHALLENGES AND LIMITATIONS 

Despite the significant advancements in ML and DL 
for skin disease detection, several challenges and 
limitations remain. These issues must be 
addressed to ensure reliable, interpretable, and 
clinically deployable AI-based solutions in 
dermatology. 
A. Data Scarcity and Class Imbalance 

One of the major hurdles in training 
robust ML/DL models is the limited availability of 
high-quality annotated dermatological datasets. 
Skin disease datasets often exhibit: 

• Class imbalance, where common skin 
conditions like acne or eczema dominate, 
while rare diseases like melanoma or 
psoriasis are underrepresented. 

• Annotation bottlenecks, since labeling 
requires dermatological expertise, making 
the annotation process time-consuming 
and costly. 

This scarcity and imbalance can lead to biased 
models that perform poorly on rare but clinically 
critical conditions, increasing the risk of 
misdiagnosis. 
 
B. Generalization and Overfitting 

`Models trained on specific datasets may fail to 
generalize across diverse patient populations due 
to: 

• Variations in skin tone, lighting, image 
quality, and device types. 

• Differences in data collection protocols 
across hospitals or regions. 

 
Overfitting is another concern, especially when 
deep models memorize training data instead of 
learning generalizable features. This reduces their 
effectiveness when deployed in real-world 
settings. 
 

C. Computational Cost and Interpretability 
Deep learning models, particularly large 

architectures such as ResNet, Inception, or 
Transformers, demand substantial computational 
resources, including high-end GPUs and extended 
training times [20]. This poses challenges in 
resource-constrained environments such as rural 
or developing regions. 

Moreover, most DL models function as "black 
boxes," offering limited interpretability. This lack 
of transparency hinders clinical trust and 
acceptance, as healthcare professionals often 
require explainable results to support decision-
making [21]-[22]. 
 
D. Real-World Deployment and Clinical Validation 

Despite high accuracy in controlled 
experimental settings, real-world deployment 
remains limited due to: 

• The lack of clinical validation and peer-
reviewed trials. 

• Regulatory barriers and standardization 
issues in model evaluation. 

• Integration challenges with existing 
healthcare information systems (HIS) and 
electronic medical records (EMR). 

Models must undergo extensive validation across 
diverse demographics and conditions before being 
trusted for clinical use. 
 
E. Ethical and Privacy Concerns 

• The use of patient skin images raises 
ethical and privacy issues, including: 

• Data privacy risks from storing and 
sharing sensitive medical images. 

• Bias in datasets, which may lead to unfair 
outcomes for underrepresented 
populations (e.g., darker skin tones). 

 
6. APPLICATIONS AND REAL-WORLD 

SYSTEMS 

The integration of ML and DL in dermatological 
applications has led to the development of 
practical systems aimed at improving accessibility, 
affordability, and accuracy of skin disease 
diagnosis. These applications have become 
especially important in regions with limited access 
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to dermatologists or advanced medical 
infrastructure. 
 
A. Mobile-Based Skin Disease Diagnosis 

`Smartphones equipped with high-resolution 
cameras and AI-based diagnostic apps have made 
it possible to screen and assess skin conditions on-
the-go. These systems typically: 

• Allow users to capture images of skin 
lesions using their smartphone. 

• Use pre-trained ML/DL models to classify 
skin conditions in real time. 

• Provide recommendations for further 
action (consult a specialist, over-the-
counter treatment). 

Examples include Skin Vision, Aysa, and Derma 
Check AI, which offer basic skin health 
assessments. Such tools empower users to conduct 
initial self-screening, particularly in areas where 
dermatological services are unavailable or 
expensive. 
 
B. Integration with Telemedicine 

The rise of telemedicine platforms has 
been accelerated by the COVID-19 pandemic, and 
AI-based skin disease diagnosis systems have 
become a natural extension of these platforms 
[23]. Key features include: 

• Seamless integration of AI skin image 
analysis into virtual consultation 
workflows. 

• Support for dermatologists by providing 
AI-driven second opinions or triage 
support. 

• Streamlined documentation and faster 
diagnosis turnaround times. 

This integration enhances remote consultations, 
reduces patient wait times, and helps prioritize 
serious cases for in-person visits. 
 
C. Use in Remote and Rural Healthcare 

In developing regions and rural 
communities where dermatologists are scarce, AI-
powered diagnostic tools provide a cost-effective 
and scalable solution [24]. These systems can be 
deployed in: 

• Community health centers, with support 
from local health workers. 

• Portable devices or kiosks, requiring 
minimal infrastructure. 

• Offline-capable apps, useful in areas with 
poor internet connectivity. 

 
By enabling early detection and timely 
intervention, these systems can reduce the burden 
of skin diseases and improve public health 
outcomes in underserved areas. 
 

CONCLUSION 
The growing burden of skin diseases worldwide 
necessitates innovative, scalable, and accurate 

diagnostic solutions. Our review highlights the 
significant advancements made in the field of 
automated skin disease detection through ML and 
DL techniques. Traditional ML models offer 
simplicity and interpretability, while DL models—
particularly CNNs and their variants—have 
demonstrated superior accuracy by learning 
complex features directly from images. 
Additionally, transfer learning, ensemble 
approaches, and attention mechanisms have 
further enhanced diagnostic performance. 

Despite these advancements, several 
challenges persist, including limited availability of 
high-quality labeled datasets, risks of overfitting, 
high computational demands, and the need for 
clinical validation. Ethical and privacy issues also 
remain critical concerns in real-world deployment. 
However, the successful integration of AI into 
mobile platforms, telemedicine services, and rural 
healthcare systems signifies the growing maturity 
and accessibility of these technologies. 

Looking forward, the continued success of 
AI in dermatological care will depend on sustained 
collaboration between dermatologists, data 
scientists, and engineers. Future research should 
prioritize data diversity, model interpretability, 
and patient-centered design to ensure these 
technologies are not only accurate but also trusted 
and usable in everyday clinical practice. By 
bridging the gap between computational 
innovation and clinical expertise, AI has the 
potential to revolutionize skin healthcare and 
improve outcomes for millions globally. 

 
 

CONFLICT OF INTEREST 
The authors declare that they have no conflict of 
interest. 

FUNDING SUPPORT 
The author declare that they have no funding 
support for this study. 

REFERENCES 

[1] ALKolifi-ALEnezi, N.S. A Method Of Skin Disease Detection 
Using Image Processing And Machine Learning. Procedia 
Comput. Sci. 2019, 163, 85–92. 

[2] Skin Disorders: Pictures, Causes, Symptoms, and 
Treatment. Available online: 
https://www.healthline.com/health/skindisorders 
(accessed on 21 February 2023). 

[3] ISIC Archive. Available online: https://www.isic-
archive.com/#!/topWithHeader/wideContentTop/main 
(accessed on 20  February 2023). 

[4] Sun, J.; Yao, K.; Huang, K.; Huang, D. Machine learning 
applications in scaffold based bioprinting. Mater. Today 
Proc. 2022, 70, 17–23. 

[5] Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; 
Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; 
Enk, A.; et al. Man against machine: Diagnostic 
performance of a deep learning convolutional neural 
network for dermoscopic melanoma recognition in 
comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 
1836-1842. 

[6] Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; 
Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, 



Budhamala Ankush Gedam et. al., International Journal of Advanced Innovative Technology in Engineering, 2025, 10(3), PP 7-13 

 
 
© International Journal of Advanced Innovative Technology in Engineering  13 

P.; Gutman, D.; et al. A patient-centric dataset of images 
and metadata for identifying melanomas using clinical 
context. Sci. Data 2021, 8, 34.  

[7] Melanoma Skin Cancer Rreport. Melanoma UK. 2020. 
Available online: 
https://www.melanomauk.org.uk/2020-melanomaskin-
cancer-report (accessed on 20 February 2023). 

[8] Mendonça, T.; Ferreira, P.M.; Marques, J.S.; Marcal, A.R.; 
Rozeira, J. PH 2-A dermoscopic image database for 
research and benchmarking. In Proceedings of the 2013 
35th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC), 
Osaka, Japan, 3–7 July 2013; pp. 5437–5440. 

[9] Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 
dataset, a large collection of multi-source dermatoscopic 
images of common pigmented skin lesions. Sci. Data 2018, 
5, 1–9. 

[10] Combalia, M.; Codella, N.C.; Rotemberg, V.; Helba, B.; 
Vilaplana, V.; Reiter, O.; Carrera, C.; Barreiro, A.; Halpern, 
A.C.; Puig, S.; et al. Bcn20000: Dermoscopic lesions in the 
wild. arXiv 2019, arXiv:1908.02288. 

[11] Dermnet. Kaggle. Available online: 
https://www.kaggle.com/datasets/shubhamgoel27/der
mnet (accessed on 20 February 2023). 

[12] Giotis, I.; Molders, N.; Land, S.; Biehl, M.; Jonkman, M.F.; 
Petkov, N. MED-NODE: A computer-assisted melanoma 
diagnosis system using non-dermoscopic images. Expert 
Syst. Appl. 2015, 42, 6578–6585. 

[13] Yap, J.; Yolland,W.; Tschandl, P. Multimodal skin lesion 
classification using deep learning. Exp. Dermatol. 2018, 
27, 1261–1267. 

[14] Dermofit Image Library Available from The University of 
Edinburgh. Available online: https://licensing.edinburgh-
innovations. ed.ac.uk/product/dermofit-image-library 
(accessed on 20 February 2023). 

[15] Gutman, D.; Codella, N.C.; Celebi, E.; Helba, B.; Marchetti, 
M.; Mishra, N.; Halpern, A. Skin lesion analysis toward 
melanoma detection: A challenge at the international 
symposium on biomedical imaging (ISBI) 2016, hosted by 
the international skin imaging collaboration (ISIC). arXiv 
2016, arXiv:1605.01397. 

[16] Codella, N.C.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, 
M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; 
Kittler, H.; et al. Skin lesion analysis toward melanoma 
detection: A challenge at the 2017 international 
symposium on biomedical imaging, hosted by the 
international skin imaging collaboration. In Proceedings 
of the 2018 IEEE 15th International Symposium on 
Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–
7 April 2018; pp. 168–172. 

[17] Codella, N.; Rotemberg, V.; Tschandl, P.; Celebi, M.E.; 
Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; 
Marchetti, M.; et al. Skin lesion analysis toward melanoma 
detection 2018: A challenge hosted by the international 
skin imaging collaboration (isic). arXiv 2019, 
arXiv:1902.03368. 

[18] ISIC Challenge. Available online: https://challenge.isic-
archive.com/landing/2019/ (accessed on 21 February 
2023). 

[19] Kawahara, J.; Daneshvar, S.; Argenziano, G.; Hamarneh, G. 
Seven-point checklist and skin lesion classification using 
multitask multimodal neural nets. IEEE J. Biomed. Health 
Inform. 2019, 23, 538–546. 

[20] Alahmadi, M.D.; Alghamdi, W. Semi-Supervised Skin 
Lesion Segmentation with Coupling CNN and Transformer 
Features. IEEE Access 2022, 10, 122560–122569. 

[21] Abhishek, K.; Hamarneh, G.; Drew, M.S. Illumination-based 
transformations improve skin lesion segmentation in 
dermoscopic images. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition 
Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 728-
729. 

[22] Oliveira, R.B.; Mercedes Filho, E.; Ma, Z.; Papa, J.P.; Pereira, 
A.S.; Tavares, J.M.R. Computational methods for the image 
segmentation of pigmented skin lesions: A review. 
Comput. Methods Programs Biomed. 2016, 131, 127-141. 

[23] Hameed, N.; Shabut, A.M.; Ghosh, M.K.; Hossain, M.A. Multi-
class multi-level classification algorithm for skin lesions 
classification using machine learning techniques. Expert 
Syst. Appl. 2020, 141, 112961. 

[24] Toossi, M.T.B.; Pourreza, H.R.; Zare, H.; Sigari, M.H.; 
Layegh, P.; Azimi, A. An effective hair removal algorithm 
for dermoscopy images. Ski. Res. Technol. 2013, 19, 230–
235. 


