
International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 3, May-2016 ISSN: 2455-6491

Copy Right to GARPH Page 4

“A LOAD BALANCING MODEL BASED ON REPLICAS OF A SERVER TO ENHANCE PERFORMANCE AND

RELIABILITY”

1
SHWETA K. TARAR

P.G Department of Computer Science & Technology, D.C.P.E, H.V.P.M, Amravati, India

shweta_tarar@rediffmail.com
 2

NISHA S. PUJARI

P.G Department of Computer Science & Technology, D.C.P.E, H.V.P.M, Amravati, India

nishapujari@outlook.com
3
DIVYANI D. LANDE

P.G Department of Computer Science & Technology, D.C.P.E, H.V.P.M, Amravati, India

divyanilande1993@gmail.com
4
PROF. N. J. PADOLE

P.G Department of Computer Science & Technology, D.C.P.E, H.V.P.M, Amravati, India

njpadole@gmail.com

ABSTRACT: Nowadays uncountable web applications exist on World Wide Web containing large information and resources.

Any company or organization which hosts their services on web obviously has service users expecting server performance and

server reliability. The question of issues related to these parameters arises when network traffic within company’s website

increases. Sometimes, this increase in network traffic continues until, ultimately, web server crashes as server is over processing

capacity. Server load balancing needs to be performed to handle high network traffic which decrease web service load time and

increases performance. The work presented here is server load balancing method using replicas of server, server side small

software/program and DNS redirection centralize server, enhancing the server performance, availability and reliability.

Keywords: Network Traffic, Server Load Balancing, Replicas of Server, Redirection Centralize Server, DNS etc.

. .

1. INTRODUCTION

With the increase in the web application on World Wide

Web the number of users using the services of also increases

on each web applications. In spite of large number of users of

any particular web site, service user expects quick services,

good performance and availability. Quick services means a

user must get a response within a time for dynamic responses

from server side such as from server administrator. Good

performance can be think off as a web page loading time and

resource accessibility time, lesser the time better the

performance. Availability in the sense of whatever the

situation is there on server side the server must be able to

deliver the available services demanded by its users. All these

issues go well and fulfilled until there are limited number of

user/request/network traffic processed by server. As soon as

the network traffic goes on increasing the burden on server

grows. Each request adds on the overall processing capacity of

server that it is capable of. Sometimes, this increase in network

traffic continues until, ultimately, web server crashes as server

is over processing capacity. This crash of server or over

burden of number of requests a server can handle results in

unavailability of server resources and services, impacting bad

performance for users experiencing slow information access,

network downtime or failed connections [3]. One of the

solutions for such problems is server load balancing. [5] Load

Balancing is distributing incoming service request across

available multiple resources. The complications and

performance issue comes when multiple service requests are

for same resource or resources.

Here we present a real time example of network

downtime and slow information access because of high

network traffic straining a server. Sant Gadge Baba Amravati

University, Amravati geographically covers the western

Vidarbha belt (i.e., five districts – Amravati, Akola, Yavatmal,

Buldhana and Washim) of Maharashtra State, India. The

University has ten faculties which includes Arts, Commerce,

Sciences, Medicine, Ayurved, Education, Social Science, Law,

Home Science, and Engineering & Technology. The semester

examination of every faculty comes almost in same period.

The result of every faculty is displayed on university website.

As the result of all faculties comes in same period probably

lakhs of university students hits the website, resulting in high

network traffic towards university server. The high network

traffic makes the server resources to load very slowly and

unavailable sometimes. The mark sheet takes 10-20 minutes to

load or even loads only half of the mark sheet sometimes or

doesn’t load at all sometimes. The resultant of this is problems

faced by students of university. The following figure depicts

the above problem.

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 3, May-2016 ISSN: 2455-6491

Copy Right to GARPH Page 5

Figure 1: Increase in Network Traffic Load of Server

In the above figure all the student users of university

hit university website probably at same time making server

overloaded with its processing capacity than it is capable of,

resulting server underperform, slow loading of resources and

probably making server services unavailable sometimes.

Taking the above stated issue as a motivation a server load

balancing mechanism needed to improve the overloaded server

performance one of the aspect to be worked. We need such

server load balancing mechanism which must be cost effective

in terms of hardware and software. Without using very costly

hardware such as routers maintaining alternate routes to pages,

costly distributed servers or multi-layer switch we need a

mechanism server load balancing. Software needed is such that

there should be less processing with each incoming request at

low cost. With this requirement an efficient server load

balancing mechanism can be develop and implemented to

achieve a good server performance. Another needful aspect is

availability, which cannot be achieving without the additional

hardware, but is achievable with low cost hardware may

include some additional server machines. To keep hardware

cost we can replace server machines with personal computers

acting as servers.

Based on the above discussion our idea is to

implement generalize server load balancing mechanism for

any web application using replicas of server to achieve

availability and a redirection centralize server for load

balancing to enhance performance of the overall web

application when multiple service requests are for same

resource or resources.

2. LITERATURE REVIEW

As we need to balance the load of web application, the

structure of web application plays an important role in

categorizing the server load balancing mechanism. As we

know web applications are based on client server architecture,

two important terms are involved are client and server.

Focusing on these two entities we categorized load balancing

mechanism in two categories.

 Load Balancing from Client Side

 Load Balancing from Server Side

2.1 Load Balancing from Client Side

This is the approach of forwarding the client request

to any replicated servers which are transparent to client. The

server selection process can be done by client itself, provided

on browser or client side proxy machines. This approach

violates one of client server based web application design issue

transparency at URL level. So to use us approach is not a good

idea.

2.2 Load Balancing from Server Side

This is approach does the load balancing at server

side, which can be further categorized based on how replicated

server is selected. These categories are Any of Replica

Approach and DNS based Request Dispatcher Approach [2].

 Any of Replica Approach

Here client request is initially given to any of the

replicas of server at randomly. Each replicated server here

must have some mechanism to check its own status of total

load, and has to make decision whether to serve the request or

to forward to another available replicated server as it itself is

overloaded.

 DNS based Request Dispatcher Approach

Here the incoming request is delegated to main DNS

server. In turn main DNS server can select any of the

replicated servers based on different scheduling polices. This

approach requires calculating/to get load on each replicated

server, so how to calculate/get load? After getting exact load

from all replicated servers, on which replicated server does the

main DNS server must forward the incoming request?

2.3 Load Balancing Algorithms

In the DNS based Request Dispatcher Approach there is

need to decide on which replicated server the incoming request

is to be forwarded. This requires what sort of load balancing

algorithm is to be used. Here are some load balancing

algorithms.

1. Round Robin: Incoming requests are forwarded

across replicated servers sequentially.

2. IP Hash: The clients IP address is use to determine

which replicated server receives the incoming

request.

3. Least Connections: Incoming request is forwarded to

the replicated server having minimum current load.

2.4 Load Status of Replicated Servers

In both the approaches how to calculate/get load of each

replicated server is common issue. However, load balancing

method Round Robin and IP hash doesn’t require to

calculate/get load of replicated servers. If it is required the load

of replicated server can be calculated/get by three ways.

1. Each replicated server has the policy to give their

load status to main DNS server periodically.

2. Main DNS server will ask for load status to replicated

servers on each incoming request.

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 3, May-2016 ISSN: 2455-6491

Copy Right to GARPH Page 6

3. Main DNS server may have database table

maintaining incoming and outgoing of request.

2.5 Approach Selection

Exactly which approach to use, is probably situation

dependent. But one can differentiate based on complex

processing burden on both the DNS and Replicated Servers.

When it comes to decision making the system is considered as

smart and very obviously smart systems need to perform

complex task. So the Any of Replica Approach needs to make

decision of whether to serve the incoming request or to

forward it to another available replicated server. The important

point here is to have criteria for overloaded server. And if

every replicated server is overloaded then what is the policy to

handle the incoming request. So using Any of the Replica

Approach might tends in designing of complex software. Now,

DNS based Request Dispatcher Approach where main DNS

server somehow has to calculate/get load on all replicated

server on each incoming request and has to make decision on

which server to forward the incoming request. In spite of two

complex task in second i.e. DNS based Request Dispatcher

Approach, we can use this approach by handling complex task

at software level in simple manner.

3.PROPOSED SYSTEM

As discussed in the previous section, as per our needs

and to keep the things simple it is decided to implement DNS

based Request Dispatcher Approach using Least Connections.

So it is need to calculate/get load of all replicated servers, this

real time status of replicated servers will be achieved by using

third way Main DNS server have database table maintaining

incoming and outgoing of request. After getting the load

incoming request is forwarded to the replicated server having

minimum current load.

Figure 2: System Architecture

A single server is replaced with a group of servers, from

which one will be the centralized server and other will be the

replicated processing servers. Here there is one important issue

if centralized server goes down whole system goes down.

Therefore, special attention is given to centralized server; it is

kept very low loaded. Its task is only to accept the request, go

on hold, check replicated server status, and forward the request

to least loaded server as shown in above figure ensuring the

high performance of load balancing system implemented. [4]

If one of the replicated server goes down the load balancer/

centralized server forward request to remaining replicated

servers, ensuring availability of the resources and services of

the servers. In this manner, a load balancing system performs

the following functions:

 Distributes client requests or network traffic

efficiently across available replicated servers.

 Ensuring high performance, availability and

reliability by forwarding incoming requests only to

replicated servers that are available.

4. CONCLUSIONS AND FUTURE SCOPE

A load balancing system here implemented acts as the “traffic

analyzer” in the way of your main DNS server which routes

client requests across all replicated servers capable of serving

the incoming requests in a manner that maximizes

performance in terms of loading time, processing capacity

utilization and ensures that no one server is overloaded or

underloaded and ensures the reliability and availability as more

than one replicated servers are available to serve the incoming

requests. Later improvements are possible in this system such

as implementing round robin algorithm for load balancing

purpose, implementation of IP Hash algorithm for load

balancing for replicated servers in geographical [1] topology or

making the system flexible to add or subtract replicated servers

on demand.

5. REFERENCES

[1] Gaochao Xu et. al., “A Load Balancing Model Based on

Cloud Partitioning for the Public Cloud”, IEEE Transaction of

Cloud Computing, Volume:18,Issue:1,pp.34-36, Feb, 2013.

[2]Philip S. Yu et al., “Dynamic Load Balancing on Web-

server Systems”.

[3]http://www.radware.com/Resources/server_load_ balancing

. aspx

[4] https://www.nginx.com/resources/glossary/load-balancing/

[5] https://en.wikipedia.org/wiki/Load_balancing_(computing)

